Archives par mot-clé : technologies

Découvrabilité: oui, mais dans quel environnement technologique?

Quatre environnements technologiques: Web, base de données, données ouvertes et liées, données ouvertes.
Découvrabilité: quel type de projet? Quatre environnements technologiques et types de projets numériques pertinents.

Favoriser la découverte d’une offre pour atteindre un objectif c’est bien, mais dans quel environnement technologique? La réponse à cette question, rarement abordée, pourrait pourtant aiguiller certains projets ciblant les moteurs de recherche vers de meilleures pratiques de conception et de rédaction pour le Web plutôt que vers la création de métadonnées.

Recherchée: méthodologie de projet

Parmi les écueils qui constituent des risques pour la réussite d’un projet, j’ai déjà élaboré sur le but et le solutionnisme technologique. Le but (résultat mesurable) est fréquemment confondu avec les moyens (découvrabilité).  L’énonciation d’un but fait partie d’un exercice stratégique. Celui-ci est escamoté, de même que l’identification des besoins, lorsque des moyens technologiques semblent apporter une réponse simple à une situation pourtant complexe.

Ces écueils pourraient être évités en adoptant une démarche de réalisation de projet qui débute avec une réflexion stratégique. Ce sujet devrait figurer au premier plan des différents coffres à outils proposés, en culture comme dans tous les domaines.

Numérique: différents environnements technologiques

Voici à présent, un troisième écueil qui peut apporter son lot de problèmes: la méconnaissance d’un univers où se croisent, sans nécessairement se connecter, divers domaines d’expertise.

Ce que nous désignons généralement comme « le numérique » rassemble des environnements technologiques qui ont des langages, structures, normes et, surtout, des objectifs et usages bien spécifiques. Voici les environnements que l’on peut retrouver dans des projets

Web (pages)

Celui des moteurs de recherche: c’est à dire les sites et plateformes développés avec les standards du Web et et dont le contenu est accessible et indexable. Seul le contenu de type HTML est exploité pour répondre aux demandes des utilisateurs. Dans cet objectif, des métadonnées comme des identifiants internationaux (par exemple: ISNI) ou locaux (par exemple: numéros uniques d’œuvres) présentent beaucoup moins d’intérêt, pour les algorithmes, qu’une bonne description à la Wikipédia. Ces métadonnées seront, par contre, très importantes dans des environnements centrés sur les données, comme les trois suivants.

Celui des jardins clos, au contenu non accessible aux moteurs de recherche, car il n’est volontairement pas ouvert et conforme aux standards du Web. On y trouve les plateformes accessibles aux détenteurs de compte (payants ou gratuit), comme les réseaux sociaux et les sites d’écoute musicale.

Web sémantique (données ouvertes et liées)

Il s’agit d’une extension du Web qui utilise des technologies, standards et infrastructures différentes de celle du Web auquel nos navigateurs nous permettent d’accéder. Ce type de contenu qui n’est pas du HTML ne peut être indexé, interprété et utilisé par les moteurs de recherche à titre de résultat.

Contribuer à Wikidata peut intéresser des initiatives de données ouvertes et liées qui ne souhaiteraient pas développer leurs propres infrastructure et modèle de représentation.

Base de données relationnelles

Même si celle-ci peut servir à alimenter des pages web, une base données n’est pas « dans le Web » et donc, inaccessible à des moteurs de recherche comme Google. Par contre, un bon modèle de données et des métadonnées appropriées à la mission et aux utilisateurs cibles participent à la conception d’interfaces de recherche et de découverte.

Données ouvertes

Libérer des données est, en soi, un projet comprenant plusieurs étapes importantes afin de rendre celles-ci disponibles sous forme de fichier(s). Ce type de démarche est réalisé en amont d’un projet de données ouvertes et liées. Si des métadonnées permettent de décrire un jeu de données, les données elles-mêmes ne font pas partie du contenu exploitable par les moteurs de recherche.

Quel est l’environnement concerné?

Il est important de bien cerner le problème, ou d’identifier et prioriser les besoins, avant de développer une stratégie et de se pencher sur les outils technologiques. Ceci réduira considérablement les risques et coûts associés à des choix qui ne pas alignés sur le résultat attendu, notamment en raison de l’incompatibilité de plateformes, langages, applications et usages.

Voici, des types de projets qui correspondent aux environnements technologiques présentés précédemment:

Site web
Promotion et visibilité de l’information par l’entremise de moteurs de recherche commerciaux.

Données ouvertes
Réutilisation de données pour la recherche ou le développement d’applications.

Données ouvertes et liées
Réutilisation de données avec les technologies du Web sémantique: bases de connaissances interconnectées, fonctions avancées d’analyse et de recherche.

Base de données relationnelle
Gestion et utilisation  de données, comme celles d’un catalogue d’enregistrements musicaux, par exemple, par des applications.

Il est possible que plus d’un environnement technologique soit concerné par un projet. Dans ce cas, il est impératif de rechercher des expertises, planifier des budgets et gérer des projets qui seront spécifiques à chacun des environnements.

* * *

Il est plus que temps d’améliorer la littératie numérique de tous les acteurs participant à des projets. Et plus précisément, connaître les particularités des différents environnements technologiques. C’est une mise à niveau qui devrait logiquement concerner les bailleurs de fonds, les prestataires de services de conception et les spécialistes des sciences de l’information.  Dans ce contexte, on devrait se demander s’il est souhaitable que les acteurs du domaine culturel soient les seuls à faire des apprentissages essentiels à la transformation numérique de tout l’écosystème.

Découvrabilité: comment aiguiller des initiatives numériques vers la bonne voie

Aiguillage pour projets de données numériques
Aiguillage pour projets de données numériques – (SunsetTracksCrop), Arne Hückelheim, [CC BY-SA 3.0], Wikimedia Commons
Il est temps d’apporter un peu de clarté dans le méli-mélo de concepts qui ne sont pas très bien maîtrisés. Voici une petite mise au point qui pourrait être bénéfique pour les promoteurs d’initiatives numériques, ainsi que les organisations qui les financent.

Quel est le but?

Il arrive qu’un projet n’ait pas de but précisément déterminé: on ne sait pas quel problème il résoudra ou quels seront les résultats tangibles. Par exemple, « authentifier une œuvre » est un moyen et non, une finalité.

Il importe de définir un but précis et tangible pour mobiliser des membres et des partenaires. Ceci est aussi essentiel pour déterminer l’espace numérique concerné par le projet et, ainsi, identifier les technologies et structures sémantiques appropriées.

Quel type d’espace numérique?

Il arrive également qu’un projet de données numériques rassemble des concepts et technologies qui appartiennent à des espaces numériques différents. Ces espaces sont:

  1. Web des moteurs de recherche

Le Web que nous connaissons est ce qu’on peut appeler le « Web des documents » parce que des pages sont reliées par des réseaux de liens hypertextes.  Dans cet espace, le texte contenu dans chaque  page est indexé et exploité par des moteurs de recherche.

Wikipédia, tout comme Wikidata, est une des bases de connaissances utilisées par Google pour valider une entité qui a été reconnue sur un site web. Rédiger un article sur Wikipédia est une excellente façon d’enrichir l’encyclopédie avec des éléments historiques et culturels québécois. On peut également s’inspirer de la structure d’un article pour améliorer le contenu d’une page web et ainsi, le rendre utile pour les moteurs de recherche.

Google exploite les balises Schema.org uniquement pour certains types de contenus afin de produire des résultats enrichis, sans toutefois en garantir l’utilisation. Les consignes d’intégration des balises démontrent l’intérêt du moteur de recherche pour le développement d’ententes commerciales (données) avec certains opérateurs et intermédiaires :

  • Musique: Google ne recommande pas de modèle; des ententes ont été conclues avec les plateformes musicales.
  • Livre: le moteur précise que son modèle cible uniquement les « distributeurs à gros volume ».
  • Événement: les balises ne sont pas nécessaires si un site tiers (ex: billetterie, Facebook, Eventbrite) est utilisé.

Attention: les balises sont sans effet si le contenu de la page ne répond pas aux exigences de qualité de Google. Il est donc plus efficace d’améliorer la valeur informative des sites web d’acteurs culturels dans un domaine ou territoire donné que d’insérer des balises.

2. Web des données

Le Web sémantique, appelé aussi « Web des données », est une extension du Web des documents. Des entités ou des ressources sont représentées par des triplets de données (entité – relation – entité). Pour les moteurs de recherche, il n’y a pas de pages à indexer, ni de contenu à exploiter dans cet espace. C’est là que la conception ou, préférablement, l’adaptation d’ontologies de domaine peut être pertinente.

Verser des données dans Wikidata permet d’enrichir une base de connaissances mondiales. Il est alors possible de lier des données de différentes sources sans avoir à investir dans le développement d’infrastructures et de modèles conceptuels pour profiter des avantages du web sémantique.

Mais ceci ne rend pas une offre culturelle plus visible. Les moteurs de recherche indexent le contenu de sites web et peuvent utiliser des ressources comme Wikidata pour valider la reconnaissance d’entités.

3. Plateforme web « privée »

Des plateformes web, qui offrent des contenus et les réseaux sociaux, forment des espaces numériques privés: elles ont leurs langages et règles de représentation et d’utilisation de l’information. Les moteurs de recherche ne peuvent en indexer le contenu, d’autant que plusieurs ne sont accessibles que sur abonnement.

4. Base de données classique

Un autre type d’espace numérique très important est constitué des bases de données. Elles peuvent être interrogées à partir de sites web et également, alimenter le contenu de catalogue en ligne. Mais n’étant pas conçues avec les technologies et standards du Web, celle-ci ne sont pas accessibles aux moteurs de recherche.

5. Et les données ouvertes?

Les données ouvertes ne rendent pas ce qu’elles décrivent plus visible ou repérable pour les moteurs de recherche. Libérer des données permet à ceux qui les utilisent, de créer de la valeur sous forme de services, produits ou nouvelles connaissances. Des données ouvertes sont également nécessaires pour des initiatives de données ouvertes et liées avec les technologies du web sémantique.

Les données ou le contenu?

Les données et le contenu jouent des rôles différent pour la découverte et la repérabilité des offres culturelles selon l’espace numérique visé.

L’amélioration de la repérabilité d’offres culturelles sur le web, pour les moteurs de recherche, repose principalement sur la lisibilité de la structure d’un site web et de son contenu. L’analyse du langage qui permet la reconnaissance d’entités et l’interprétation d’un texte ne se fait pas sur des données, mais du contenu.

Il est donc important de rappeler que les moteurs de recherche indexent du texte. Le contenu leur fournit le contexte et la diversité de termes et de liens nécessaires pour alimenter leurs modèles d’organisation des connaissances. Ceux-ci sont appelés  des graphes de connaissances. Google n’utilise pas d’autre modèle que le sien.

Identifiants:  dans quels espaces?

Les données sont exploitées par une grande variété de systèmes de gestion de bases de données et, également, sous forme de données liées (ouvertes ou non), dans le web sémantique. C’est dans ces types d’espaces numériques que des identifiants uniques sous forme de données sont les plus utiles. Bien que ces derniers puissent enrichir la biographie d’une artiste ou la fiche technique d’une œuvre, sur un site web, ils ne peuvent être interprétés par les moteurs de recherche.

Découvrabilité: ça commence sur un site web

Votre site web devrait être la source d’information numérique  la plus complète et la plus fiable à votre sujet. Pour différencier une offre culturelle, il faut miser sur une description plus riche que de simples informations factuelles. En utilisant des hyperliens pour fournir plus d’information, vous signalez des entités importantes qui aident les moteurs à contextualiser votre offre. En prime: un contenu bien structuré vous permettra de mieux interpréter les statistiques d’usage de votre site.

Les moteurs de recherche améliorent sans cesse leur capacité à interpréter le contenu afin de l’utiliser pour répondre à des questions.  Nous devons réinvestir le domaine du langage sur ces espaces numériques privilégiés que sont nos sites web.

Deux leviers à ajouter au rapport de la mission franco-québécoise sur la découvrabilité

Leviers de la découvrabilité des contenus culturels francophones (source: MCCQ).
Rapport franco-québécois sur la découvrabilité en ligne des contenus culturels francophones.

Le rapport sur la découvrabilité en ligne des contenus culturels francophones résulte d’une mission conjointe des ministères de la Culture du Québec et de la France. Il dresse un bon état des lieux d’un ensemble de phénomènes et d’actions, sans égarer le lecteur dans les détails techniques. Un excellent exercice de synthèse, donc, réalisé par Danielle Desjardins, auteure de plusieurs rapports pour le secteur culturel et collaboratrice du site de veille du Fonds des médias du Canada.

Cependant, dans le schéma des 12 leviers à activer pour une meilleure découvrabilité des contenus culturels francophones (voir plus haut), il manque à mon avis deux éléments essentiels:

  • Est-ce aux acteurs culturels que revient la charge de rendre l’information concernant leurs créations ou leurs offres numériquement opérationnelle?
  • Quel espace numérique offre les meilleures conditions de repérabilité, d’accessibilité et d’interopérabilité de l’information ?

Premier levier: mises à niveau des métiers du Web

Il est important de sensibiliser les acteurs culturels à l’adoption de pratiques documentaires telles que l’indexation de ressources en ligne. Ceci dit, la mise en application des principes, ainsi que le choix de modèles de représentation de contenus en ligne, sont des compétences qui ne s’acquièrent pas comme on apprend à se servir d’un logiciel. On ne peut pas attendre de toute personne et organisation du secteur culturel de tels efforts d’apprentissage. D’autant plus que la production de l’information pour le numérique fait appel à des méthodes et savoirs relevant des domaines du langage et de la représentation des connaissances autant que des technologies numériques.

Si les données structurées sont perçues comme des solutions pouvant accroître la visibilité d’offres culturelles sur nos écrans, elles appartiennent à des domaines de pratiques pas suffisamment maîtrisés au sein des métiers du Web. C’est pourtant bien vers des spécialistes en développement, intégration, référencement et optimisation que se tournent les acteurs culturels cherchant à rendre le contenu de leurs sites web plus interprétable par des machines. Or, à ma connaissance, il n’existe actuellement pas de formation et de plan de travail tenant compte de l’interdépendance des volets sémantiques, technologiques et stratégiques du web des données.

Il devient de plus en plus impératif d’identifier les connaissances à développer ou à approfondir chez les divers spécialistes contribuant à la conception de sites web aux contenus plus repérables. Il serait également souhaitable de soutenir un réseau de veille interdisciplinaire ayant pour objectif de contextualiser et d’analyser l’évolution de l’écosystème numérique.

Exemple: dans la foulée d’une étape importante de ses capacités d’interprétation (traitement automatique du langage), Google a mis à jour, cet été, ses directives d’évaluation de la qualité de l’information. Il va sans dire que c’est important.

Deuxième levier: modernisation des sites web

Dans le Web des moteurs de recherche intelligents, la reconnaissance des entités passe par l’indexation de pages web et l’analyse des contenus. Les sites web devraient donc être des sources d’information de première qualité, tant pour les internautes que pour les moteurs de recherche.

Est-il normal de ne pas trouver toute l’information, riche et détaillée, sur le site de référence d’une entreprise culturelle? Pour le bénéfice des projets numériques, il est vital de concevoir des contenus pertinents pour les machines, lesquelles évaluent à présent la qualité des sources d’information afin de générer la meilleure réponse à retourner à l’utilisateur.

Pour une productrice ou un artiste, il est beaucoup plus stratégique de faire de son site web une source primaire, en attribuant une page spécifique à la description de chaque œuvre, que de créer un article sur Wikipédia. Rappelons que Wikipédia n’est pas une source primaire pour les moteurs de recherche. De plus, l’usage du vocabulaire (Schema.org) ne leur fournit qu’un signal faible sur la nature d’une offre.

Un savoir commun, entre information et informatique

L’adaptation des contenus culturels à l’environnement numérique repose, avant tout, sur de meilleurs sites web. Ces espaces offrent les conditions optimales d’autonomie, repérabilité, accessibilité et interopérabilité. Leur modernisation requiert des acteurs clés, que sont les spécialistes du Web, une mise à niveau rapide de leurs connaissances et de leurs pratiques.

Finalement, afin d’opérer cette mise à niveau et de développer ces savoirs communs, il faut bien entendu insister sur l’interdisciplinarité entre les métiers du web et, notamment, le domaine des sciences de l’information.

Comment faire un plan de « découvrabilité » pour des résultats mesurables

« La grande absente de la plupart des initiatives numériques, c’est la stratégie. »
Photo: Kelly Sikkema via Unsplash

Depuis peu, en culture, on retrouve un volet « découvrabilité » dans la plupart des appels à projets. S’agit-il d’une application technologique, de techniques de référencement ou d’une campagne de promotion numérique?  L’absence d’explications concrètes et de description des compétences requises met les  demandeurs (ainsi que les bailleurs de fonds!) dans une situation où ils ne disposent pas des guides nécessaires pour savoir ce qu’il faut faire, ni quels résultats escompter.

Un  projet dans un projet

Assurer la repérabilité d’une nouvelle création ou d’une nouvelle offre est un projet à part entière, avec ses ressources, ses objectifs et ses réalisations. Il ne s’agit pas de mettre en commun ce que chacun aura produit de son côté, mais de produire des contributions s’alimentant les unes des autres. C’est pourquoi, dans nos velléités de transformation numérique, le travail en silo est un frein à la réussite de nos projets.

Les mots qui font des connexions

C’est l’information fournie à propos des choses qui est repérable — pas les choses en elles-mêmes. Cette distinction est extrêmement importante puisque c’est le choix des éléments descriptifs qui retient l’attention d’audiences cibles et qui permet aux moteurs de recherche de connecter des offres à des intentions et des profils d’utilisateurs.

Sous le couvert nébuleux de la découvrabilité, il existe en réalité des pratiques et des standards permettant de structurer l’information pour le Web afin d’en assurer la repérabilité, l’accessibilité et l’interopérabilité.

Google ne parle pas web sémantique

Représenter des connaissances avec les technologies du web sémantique (URI, RDF…) et structurer de l’information pour des moteurs de recherche sont des projets différents qui n’ont pas les mêmes finalités.

Si votre objectif est de faire découvrir votre offre culturelle en vous servant, entre autres, des moteurs de recherche pour générer des visites, des visionnements ou des achats, le web sémantique ne vous sera d’aucune utilité!

Google n’exploite que le langage de balisage Schema.org

Pas de « découvrabilité » sans stratégie

La grande lacune de la plupart des plans de découvrabilité est l’absence ou la faiblesse de la stratégie comment pousser les bons contenus aux bons publics, sur les bons canaux, pour atteindre des objectifs mesurables. Or, ce travail est essentiel à plusieurs titres:

1 – Connaître les publics et fixer des objectifs

À quels besoins et à quels publics votre offre est-elle susceptible de répondre? Les objectifs à atteindre doivent être déterminés en fonction des intérêts et comportements de ces publics cibles ainsi que de leurs possibles relations à l’offre.

2 – Différencier votre offre

Le vocabulaire Schema.org permet de fournir une description détaillée d’une offre culturelle. Google n’en utilise cependant que certains éléments. Baliser une offre de spectacle n’est pas suffisant pour permettre à celle-ci de se différencier de milliers d’autres offres. La connaissance des publics fournit les éléments d’information et le vocabulaire pouvant aider les moteurs de recherche à faire des connexions entre les intentions et profils des utilisateurs et les offres disponibles.

3 – Faire travailler des spécialistes ensemble

Les balises et le référencement par mots clés sont des outils complémentaires s’appuyant sur la stratégie de promotion. Accroître la découverte commence par la présentation de l’offre sur le site web . Ceci a pour but de faciliter le travail des moteurs de recherche et d’améliorer l’expérience de l’utilisateur avec leur interfaces.

4 – Relier les acteurs de l’écosystème

Si un site web est absolument essentiel et stratégique, d’autres présences numériques contribuent au rayonnement d’une offre. Une bonne stratégie met donc à contribution les acteurs de l’écosystème en identifiant des points d’entrée (réseau social, vidéo, site partenaire, etc.) et en multipliant ainsi les parcours de découverte.

5 – Ne pas compter uniquement sur Google

En se contentant de produire des métadonnées sous forme de balises Schema.org, on se conforme aux modèles et directives qui répondent avant tout aux objectifs d’affaires d’un géant du numérique. Bien que le balisage d’offres pour les moteurs de recherche fasse partie des bonnes pratiques web, Google ne garantit aucun résultat (longue lecture, mais excellent billet).

6 – Mesurer l’atteinte des objectifs

Finalement, la découverte d’offres culturelles sur un moteur de recherche est difficilement mesurable. Elle dépend de plusieurs facteurs extrêmement variables, comme le profil, l’intention présumée par l’algorithme et les usages antérieurs de chaque utilisateur. Ce sont donc les objectifs et indicateurs de mesure ayant été déterminés dans le plan stratégique qui permettront d’évaluer la réussite de celui-ci.

Utiliser des métadonnées sans tomber dans le solutionnisme

Ce ne sont pas les métadonnées qui produisent des résultats, mais les moyens déterminés par la stratégie. Il faut donc proposer des initiatives plus marquantes pour la diffusion et l’appréciation de nos offres culturelles. Par exemple, renouveler l’expérience de recherche sur un site en présentant l’information sous forme de fiches, de façon similaire à Google, mais selon d’autres règles que la popularité et la similarité.

Il n’existe pas de recette. Chaque projet étant unique, il doit se différencier pour se démarquer, et ce grâce au choix des canaux, plateformes, mots, images et liens adressés aux bons publics.

Surtout, il ne faut pas se contenter d’appliquer les consignes de Google. On doit également chercher à comprendre l’interaction complexe des systèmes et identifier les éléments stratégiques que nous pouvons contrôler.

Enfin, nous ne pouvons pas encourager le milieu culturel à se conformer à un système dont nous ne comprenons pas le fonctionnement et dénoncer, dans le même temps, la domination et l’opacité des GAFAM. Cette contradiction en dit long sur les connaissances qu’il nous reste à acquérir…

Et si nous retombions en amour avec nos sites web?

William Moore de la réserve de Mattagami, Ontario, réparant un filet.
John Macfie, 1958, Archives publiques de l’Ontario sur Flickr.

Pourquoi l’évolution de nos sites web s’est-elle arrêtée au document numérique alors que chez des entreprises, comme Amazon ou Spotify, elle se concrétise par le déploiement de plateformes de données?

Les interactions que nous pouvions organiser sur nos domaines se sont atrophiées car nous avons laissé aux algorithmes le soin de faire des liens de proximité, de sens, de popularité ou autres. Ces liens qui favorisent la découverte et le rayonnement, nous ne les contrôlons pas.

Décloisonner les parcours de formation

Est-ce faute de ne pas avoir adapté, en les décloisonnant, des formations comme l’informatique, la communication et les sciences de l’information à la complexité de nouvelles pratiques? Dans le Web, les logiques technologiques, informationnelles et industrielles s’entrecroisent à présent pour former un nouveau champ de connaissances pour lequel il n’existe pas encore de savoir commun.

Entrer dans le domaine du langage

Ou, encore, est-ce faute de n’avoir pas réalisé que la donnée relève  beaucoup plus du langage et de la pensée que du calcul et de la technologie?

Les concepts et particularités propres aux différents domaines de l’activité humaine ne sont pas aisément traduisibles dans la pensée mathématique des machines. L’information n’est plus uniquement un enjeu d’ingénierie, une chose à stocker, à transformer et à faire circuler. Dans le Web, elle relève du domaine du langage, décrivant des choses et des relations entre ces choses. Cette perspective, pourtant essentielle à l’ère de l’intelligence artificielle, est pratiquement absente des méthodes courantes de conception.

S’affranchir du document

Ou, tout simplement, est-ce parce que des solutions d’utilisation facile et très souvent gratuites nous ont été offertes? Avons-nous finalement laissé à d’autres les défis de l’évolution du Web et de nos architectures de connaissances? Cette évolution était pourtant prévisible dès 2009, la nouvelle méthode de conception de sites proposée cette anné-là par la BBC dans un billet de blogue en faisant foi.

Ne plus troquer l’acquisition d’expertise pour la facilité

Je crois bien que nous avons graduellement délégué à des entreprises, par algorithmes interposés, le choix des mots et des liens définissant qui nous sommes et la régulation des flux d’information dans un espace qui n’est pourtant qu’un sous-ensemble du Web. Nous avons renoncé au contrôle sur la découverte et la recommandation dont nous disposions grâce à nos blogues, nos répertoires et même, nos collections de fils RSS — j’utilise encore la mienne!

Alors que nous concevons encore un site web comme un ensemble de documents, les acteurs de la nouvelle économie prospèrent grâce à des sites web conçus comme des plateformes de données. Ces plateformes permettent d’aller beaucoup plus loin que la publication d’information. Par exemple:

  • Trouver, réutiliser et partager des contenus par les utilisateurs et à l’interne;
  • Définir les rôles, responsabilités et règles de gouvernance relatifs à chaque ensemble de données.
  • Faciliter l’accès, de façon transversale, aux connaissances nécessaires pour la recherche de solutions et l’innovation.
  • Et, surtout, relier les métadonnées descriptives des ressources aux données d’usage résultant de l’interaction des utilisateurs avec les contenus.

Réapprendre à faire du Web

Avant de tenter de mesurer le rayonnement de contenus culturels sur les plateformes, il faudrait se demander si nous en maîtrisons les conditions, sur nos sites web et au sein de nos écosystèmes numériques.

Nous avons choisi la gratuité et la facilité des plateformes qui sont la propriété d’entreprises sachant, mieux que nous, exploiter l’information tirée des interactions avec nos contenus. Le contexte actuel de la pandémie semble avoir accentué notre dépendance envers ces services qui entretiennent notre espoir de retrouver nos publics et nos clients.

Nos sites web nous offrent pourtant toujours la possibilité de développer et d’afficher nos écosystèmes de liens et de nommer les choses qui nous rassemblent. Afin de ne pas les laisser s’atrophier, nous devrions nous en servir pour mieux représenter nos domaines d’activité, nos contenus, ainsi que nos réseaux.

Solutionnisme et inégalités: gare aux écueils de la transformation numérique

jeu de mikado
Jeu de mikado, Heurtelions [CC BY-SA], Wikimedia Commons
Le recours au « tout numérique », dans les circonstances de la crise actuelle entraînée par la pandémie, révèle de nombreuses inégalités. Qu’il s’agisse de l’enseignement à distance, de la dématérialisation des services publics ou, même, du traçage des personnes, les propositions de « solutions » tiennent généralement pour acquis que l’informatique connectée est à la portée de tout le monde. Nous devons éviter les écueils de la transformation numériques que sont le solutionnisme et la création d’inégalités numériques.

Imaginer nos propres solutions

J’ai élaboré, dans un précédent billet, sur le piège du solutionnisme technologique:  « Ce ne sont pas des plateformes numériques qui ont permis à Netflix et compagnie de bouleverser l’industrie. C’est d’avoir compris le potentiel du Web et pensé autrement l’accès, la distribution et la production de contenus audiovisuels, en osant remettre en question les modèles établis.»

Cette expression peut s’appliquer au sentiment d’urgence qui nous pousse vers le développement d’un outil avant même d’avoir défini le problème, exploré les causes possibles et analysé les systèmes sociaux et techniques.

Il ne faut pas tomber dans ce piège et nous contenter de reproduire des stratégies et des outils qui ont été conçus pour servir d’autres objectifs que les nôtres.

Internet pour réduire les inégalités

Voici quelques éléments qui favoriseraient la transformation numérique, en commençant par la condition de base:

  • Accès Internet sur tout le territoire.
  • Accès Internet à la maison (gratuit ou à coût modique).
  • Bande passante nécessaire pour l’accès de qualité à du contenu audiovisuel.
  • Ordinateur à la maison (échapper aux coûts de l’obsolescence programmée,  promouvoir les logiciels libres). Équipement en nombre suffisant pour les besoins d’une famille confinée.
  • Connaissances informatiques et habiletés numériques suffisantes (autonomie des utilisateurs, sécurité informatique, protection de la vie privée).
  • Équipement adapté et logiciels et contenus web accessibles aux personnes en situation de handicap temporaire ou permanent.
  • Service de médiation: outils d’accès –et de contribution– à la connaissance et à la culture, littératie de l’information (bibliothèques publiques, initiatives citoyennes).
  • Commerçants, fonctionnaires, profs et professionnels ayant des compétences numériques suffisantes ou les ressources nécessaires pour offrir un bon niveau de services en ligne.
  • Amélioration du niveau d’alphabétisation (compréhension des consignes d’utilisation des services en ligne et des instructions techniques).

Technologies plus simples, accessibles et durables

Dans une tribune, Jean-François Marchandise, cofondateur de la Fondation Internet nouvelle génération, partage ce constat sur le besoin de médiation numérique :

Aujourd’hui, une grande partie de l’innovation numérique repose sur un numérique de luxe. Nous allons vers des « toujours plus », adaptés à un monde en croissance éternelle et en ressources infinies…
A contrario, il va davantage falloir composer avec un numérique moins high tech, qui puisse fonctionner avec trois bouts de ficelle, de manière plus décentralisée, avec une moindre dépendance au lointain, une relocalisation des savoir-faire.

De plus, si tous les citoyens sont égaux, ne devrions-nous pas élaborer des propositions numériques en fonction du plus bas dénominateur numérique commun ?

Pilotage d’initiatives et intelligence collective

Cette pandémie devrait nous faire réaliser que nous devons changer nos méthodes de travail et prendre garde aux inégalités numériques et au solutionnisme technologique.

Si nous souhaitons tirer des apprentissages constructifs de la complexité de cette situation, nos équipes de projets doivent être interdisciplinaires et nos analyses doivent tenir compte de l’interdépendance des systèmes. Les outils de communication et de travail collaboratif peuvent faciliter la circulation des idées. Cependant, seule une réelle transformation du pilotage des initiatives numériques, vers une forme d’intelligence collective, pourrait les rendre plus efficaces et accroître leurs bénéfices.

Pour que le Québec puisse se relever le plus rapidement de cette crise, l’ensemble de la société doit participer à la création de valeur (savoir, culture, industrie). Et pour cela, il faudrait d’abord réparer la fracture numérique, faire de l’accès Internet un service public essentiel et apprendre à piloter des projets dans la complexité.

Solution technologique pour problématiques complexes

Lego Color Bricks par Alan Chia
Alan Chia [CC BY-SA 2.0], Wikimedia Commons
Imiter des géants de l’économie numérique en développant une plateforme peut-il apporter des solutions aux problématiques complexes de la diffusion de contenus francophones dans une industrie traversée par de profonds changements ?

Tout récemment, une solution simple à une problématique complexe a refait surface dans le milieu culturel canadien.

Ottawa investi 14,6 millions dans une nouvelle plateforme de diffusion de contenus francophones, Le Devoir, 7 août 2019.

Mettre en avant une « solution » technologique permet trop souvent d’éviter d’épineux questionnements. Cependant, alors que les règles du jeu et les usages changent, nous ne devrions pas nous soustraire à un examen des conditions de création et de production qui sont soutenues par nos législations et programmes. Nous finissons par maintenir, tant bien que mal, des modèles qui fonctionnent de moins en moins.

Ce ne sont pas des plateformes numériques qui ont permis à Netflix et compagnie de bouleverser l’industrie. C’est d’avoir compris le potentiel du Web et pensé autrement l’accès, la distribution et la production de contenus audiovisuels, en osant remettre en question les modèles établis. Revoir des modèles et des programmes qui demeurent encore très « télévision » demande évidemment beaucoup d’ouverture, de courage et de vision, mais il faut espérer que ce soit encore possible.

Une proposition de plateforme de diffusion de contenus culturels québécois, avait émergée, en 2017.  En évitant de remettre en question les façons de faire, ce type de projet ne fait que reporter les nécessaires adaptations qu’une industrie doit entreprendre pour durer et prospérer.

Il semble que nous ayons encore beaucoup de difficulté à appréhender les problématiques de la production et de la consommation de contenus culturels dans un monde numérique. Ne serait-il pas temps d’adopter, pour les analyser,  d’autres méthodes que celles qui nous font tomber le piège des solutions simplistes ?

Données ouvertes et liées: le web comme base de données

Les données ouvertes et liées (linked open data) sont au cœur des grands projets numériques en culture et leur potentiel va bien au-delà de l’amélioration de la découvrabilité de contenus.

Un web plus intelligent

En 2001,  une décennie après avoir inventé une façon de partager des documents en réseau  (World Wide Web), Tim Berners-Lee propose de renforcer cet espace de collaboration en rendant des données plus facilement utilisables et interprétables par des machines.  Il décrit, dans un article, les objectifs et éléments du web sémantique.  Selon cette extension du web, des données qui sont structurées (par exemple, les métadonnées d’un catalogue de films) peuvent être partagées et réutilisées, indépendamment des enjeux d’interopérabilité technologiques, systémiques et même linguistiques.  D’abord, une mise en contexte sur cette évolution du web qui est également appelée « web de données ».

De stockage centralisé à diffusion décentralisée

La base de données n’est pas conçue pour être interopérable avec toutes les autres bases de données. C’est un mode de gestion centralisée qui date d’avant le web, ses standards et la décentralisation de l’information.  Chaque base de données a une structure et des identifiants qui lui sont spécifiques. De plus, les relations entre les données sont induites, c’est à dire qu’elles ne sont pas exprimées sous forme de données mais par la structure de la base.  Emmagasinées dans une base de données, elle sont donc inaccessibles et difficilement interprétables par des logiciels.  C’est pourquoi, pour que ces données puissent être réutilisées et reliées entre elles, il faut qu’elles soient ouvertes et liées.

Données ouvertes  pour être accessibles

La plupart des données ouvertes qui sont à notre disposition, au Québec et au Canada,  sont disponibles selon des licences qui spécifient les conditions de leur réutilisation. Cependant, celles-ci se trouvent dans des silos qui freinent leur exploitation. Il n’y a pas de structure, de métadonnées et de formats communs entre les jeux de données. Il est donc impossible, pour un agent automatisé, comme une application de recherche, de trouver, parmi les fichiers, les données qui fournissent l’information recherchée.  Il convient alors de les publier « dans le web » sous forme de données liées pour ne pas laisser d’autres sources d’information ou d’autres contenus culturels répondre aux intentions des internautes.

Données ouvertes et liées pour être référencées dans le web

Des données liées sont des données qui sont intelligibles dans un format compréhensible par des machines.  De manière similaire à une page web, on publie une donnée dans le web en lui donnant une adresse ou URI (Uniform Resource Identifier) selon le même protocole de transmission (HTTP). Grâce aux URI qui les identifient, les données ouvertes sont référencées sur le web.  À l’aide des ressources qui sont décrites par les URI, le web sémantique « met en place deux notions très importantes, soit (1) référer à des concepts (et non pas du texte) et (2) faire des liens entre ces concepts. »  Cette distinction entre les recherches navigationnelle (mots clés) et informationnelle (concepts) se trouve dans une très éclairante initiation au web sémantique rédigée par Caroline Barrière, chercheuse en traitement automatique des langues.

C’est en faisant des liens vers ces ressources , à partir de nos propres données, qui sont elles-mêmes sous forme d’URI, que nous créons des réseaux de données. Ces réseaux permettent à notre culture d’être référencée, trouvée et réutilisée.  En voici un exemple:

Croiser Robert Lepage, François Dompierre et Dominique Michel à la Bibliothèque nationale de France

La mise « dans le web » des données de la Bibliothèque nationale de France a débuté en 2011. C’est un des projets de données ouvertes et liées qui sont soutenus par l’État français, conformément à la Feuille de route stratégique sur les métadonnées culturelles.

Auteurs liées à Laurie Anderson dans data.bnf.fr, les données ouvertes et liées des collections de la Bibliothèque nationale de France.
Auteurs liées à Laurie Anderson dans data.bnf.fr, les données ouvertes et liées des collections de la Bibliothèque nationale de France.

La version web sémantique de la Bibliothèque nationale de France fournit de l’information beaucoup plus utile qu’une liste de documents correspondant aux mots recherchés: un nouveau mode d’accès à la connaissance. Grâce à ses données ouvertes et liées, la BnF rend visible les relations entre des ressources, des personnes et des activités.

C’est ainsi  qu’une recherche sur la compositrice et plasticienne Laurie Anderson nous fait naviguer de la musique au cinéma, en passant par les arts de la scène. En suivant les liens des contributions communes avec d’autres auteurs, on croise Yves Jacques et Robert Lepage (La face cachée de la lune). Et chez Robert Lepage, on peut voir les liens pointant vers les oeuvres qui ont influencé sa création, croiser Denys Arcand et jeter un coup sur une partie de sa filmographie pour découvrir les oeuvres du compositeur François Dompierre et une partie de la carrière de l’actrice Dominique Michel.

Dommage qu’il y ait si peu d’images libres de droits pour mieux représenter les personnes et les créations qui font notre culture. Il faudrait prendre l’habitude de contribuer à Wikimedia Commons, la base de données multimédia à laquelle s’alimentent des projets comme celui de BnF.

Connaissance augmentée et distribuée

Nous pouvons accroître la découvrabilité de notre culture de façon pérenne et innovante. Il est également possible d’étendre la connaissance que nous avons de nos propres ressources en liant nos données entre elles. Nous pourrions alors l’enrichir par des liens vers d’autres sources de données ouvertes et liées qui contiennent de l’information à propos de notre culture et de notre patrimoine, comme BnF, Digital Public Library of  America, MusicBrainz ou VIAF.

Ce ne sont pas les moyens qui manquent pour commencer à expérimenter de nouvelles manières de valoriser des données culturelles.  Un de ces moyens est, par exemple,  le téléversement des données dans Wikidata.

Mais, face à la complexité des enjeux techniques des métadonnées (pour preuve: cette typologie des métadonnées pour le patrimoine culturel), il manque une vision d’ensemble des parcours possibles.  Pour cela, il faut rassembler les compétences informationnelles et technologiques nécessaires pour aider des organismes ou des initiatives collectives à faire des choix afin de démarrer des projets rapidement.

Pourrait-on rêver d’un regroupement interdisciplinaire sur les données ouvertes et liées pour accompagner les démarches et projets dans le secteur culturel ?

Données liées et recommandation

I want AI-driven products to come with questions, suggestions or answers I wouldn’t have thought of.

Design Principles for AI-driven UX, Joël Van Bodegraven

Vers le métaweb. Matrice du niveau de connectivité sociale et informationnelle de Nova Spivack

Le web sémantique est cette évolution du web dont une des formes est l’utilisation d’un modèles de données structurées par des moteurs de recherche comme Google. Faire des relations sémantiques entre des données, à l’aide de métadonnées, facilite le raisonnement automatisé sur des inférences. Le web sémantique favorise la découvrabilité, mais permet surtout de repousser les limites que sont nos modèles de pensée et nos systèmes actuels.

Il est essentiel d’améliorer nos systèmes d’information et nos processus et d’adopter les meilleures pratiques du web des données  (diapos à visionner absolument) pour produire des données facilement exploitables.

Données structurées, données ouvertes et liées: est-ce la même chose ?

Données structurées et données ouvertes et liées sont des expressions dont l’usage indifférencié peut nuire à la prise de décisions qui ont une grande importance pour la réussite d’un projet dans le domaine culturel. Par données structurées , on fait ici référence à la technique d’indexation préconisée par Google (structured data). Ces expressions désignent deux manières différentes de travailler dans le web des données. Ce billet concerne les modèles de données et outils proposés afin de documenter des ressources pour les moteurs de recherche.

Un autre billet abordera les avantages spécifiques des données ouvertes et liées.

Guide des données structurées de Google pour documenter des livres.
Guide des données structurées de Google pour documenter des livres.

Google et le web sémantique

En 2013, Google effectue un des plus importants changements sur son algorithme de recherche en plus d’une décennie.

Baptisée Hummingbird , la nouvelle mouture s’appuie sur le sens et le contexte plutôt que sur la pondération de mots clés. Elle fait également appel à un savoir encyclopédique qui est organisé comme un graphe de connaissances et qui est constitué en grande partie à partir de Freebase, une base de données structurées collaborative, acquise par Google. Cette masse de données, appelée Knowledge Graph, permet de à l’algorithme de classer l’information et, de ce fait, de savoir à quelles autres informations elle est liée. C’est une logique similaire à celle de Wikipédia, où chaque article comporte plusieurs liens internes et externes.

La nouvelle version de l’algorithme peut donc effectuer des recherches en mode « conversationnel » (Où faire réparer mon téléphone?) et, surtout, améliorer les résultats de recherche grâce aux concepts du web sémantique: des métadonnées qui donnent le sens des données et qui permettent de faire des liens qui produisent de l’information. En comprenant le sens et le contexte de la demande, il devient possible, pour le moteur de recherche, de mieux interpréter l’intention de l’individu qui la transmet.

De la liste de pages web aux résultats enrichis

Depuis, la recherche de (méta)données qui font du sens prend progressivement le pas sur la recherche de mots clés. C’est une transition que l’on peut très facilement constater sur nos écrans mobiles. Nous passons donc d’une liste de pages qui comportent les mots clés recherchés à une agrégation d’informations qui résulte de liens entre des données structurées.

Il y a toujours une recherche de pages, mais ce sont les données qui décrivent des « ressources » (personnes, choses, concepts) qui sont désormais importantes. Au web documentaire, celui où l’information est présentée métaphoriquement en pages, s’ajoute le web des données, celui où toute connaissance est de la donnée qui peut être collectée et traitée par des machines. Celles des moteurs de recherche et celles de toute entité qui souhaite s’en servir pour développer un service ou un produit qui aurait de la valeur.

Schema: représentation pour moteurs de recherche

Les données structurées sont exprimées selon un modèle de métadonnées qui a été conçu par un regroupement de moteurs de recherche (Google, Bing, Yahoo! et le russe, Yandex). Ces données sont publiées dans le code HTML des pages où sont présentées les ressources qu’elles décrivent. Ces données sont publiques, mais pas ouvertes. Mais ce sont cependant des données liées puisque le modèle Schema permet de produire des triplets (symphonie pour un homme seul (sujet) – est de type (prédicat)- électroacoustique (objet)). Quelques exemples sont présentés dans un billet précédent l’usage de données structurées par Google. Le rôle des données structurées et des liens vers Wikipédia est expliqué plus en détail dans un guide sur la documentation des contenus produit pour le Fonds indépendant de production, avec la collaboration de TV5.ca et l’appui de la SODEC.

Apprendre à documenter: une étape nécessaire

Alors, documenter une ressource à l’aide de données structurées, en intégrant celles-ci dans la page web de la ressource, est-ce « travailler pour Google » ?

Oui, bien sûr. Mais, ce n’est qu’un premier pas dans l’apprentissage pratique du rôle clé des données dans une économie numérique. Mais s’en tenir à cette étape, c’est conformer notre représentation de la culture à un modèle de représentation et à des impératifs d’affaires qui sont hors de notre contrôle et qui ne répondent à des impératifs économiques qui avantagent la plateforme.

Ne pas dépendre d’entreprises qui se placent au-dessus des lois et des États est un des enjeux qui motivent des gouvernements et des institutions à soutenir, par des politiques et des programmes de financement, des projets basés sur les principes et les technologies du web sémantique qu’ils peuvent contrôler. Nous verrons, dans un prochain billet, les opportunités qu’offrent ces technologies pour l’innovation et la promotion de la culture.