Archives par mot-clé : recherche

Le journalisme d’enquête et le graphe de connaissances de Google

Google annonce un changement à son algorithme afin de promouvoir le journalisme d’enquête.

Mais ceci servira surtout à améliorer la quantité de données contenues dans son graphe de connaissances (knowledge graph) et d’étendre son influence sur ce que nous voyons sur le web.

Diagramme: Intégration d'information collectée sur le web dans le graphe de connaissances de Google.
Intégration d’information collectée sur le web dans le graphe de connaissances de Google. Source: SEO by the Sea.

Bill Slawski est un spécialiste de l’optimisation pour moteurs de recherche. Sa formation de juriste lui permet de porte une attention particulière aux  demandes de brevet. Il en commentait  une, récemment, qui fait référence au développement du graphe de connaissances (knowledge graph) de Google.  Elle concerne l’intégration, dans son graphe,  d’information collectée sur le web, afin d’accroître la masse de données :

The patent points out at one place, that human evaluators may review additions to a knowledge graph. It is interesting seeing how it can use sources such as news sources to add new entities and facts about those entities.

Comme chez les autres entreprises dont le modèle d’affaires repose sur la donnée, une grande partie du traitement de l’information  et de la production de données résulte du travail non rémunéré d’amateurs et passionnés:

How can you teach an algorithm to understand all these distinctions? Gingras said Google is doing so through its Quality Raters, a global network of more than 10,000 individuals who offer feedback on Google’s search results, which in turn is used to improve the company’s search algorithms.

Google says it will do more to prioritize original reporting in search

Ceci sert-il les intérêts du journalisme ? Probablement, mais il est trop tôt pour le vérifier. Cela sert surtout à développer une connaissance très poussée de nos rapports à l’information et de permettre à d’autres d’influencer notre vision du monde et de fabriquer des opinions.  S’informer sur le scandale Facebook – Cambridge Analytica devrait nous faire prendre la mesure de l’intervention de  ces systèmes dans notre développement social, notamment, la fabrication d’opinions et d’antagonismes.

À quelles questions répondent vos (méta)données ?

Question: Meaning of life, the universe and everything, Douglas Adams
Capture d’écran « gVIM with 42 help », Wikimedia Commons

Mise à jour 2019-09-07: ajout, à la fin du billet, d’information concernant les cas d’usage, suite à un commentaire exprimé sur Facebook.

Produire et réutiliser des données descriptives, ce n’est pas travailler sur une solution, mais sur des questions.

Quelle est la finalité du projet ?

Comment savoir si les données d’une organisation ou d’un collectif ont un fort potentiel informationnel ? Comment ces données peuvent-elles répondre à des questions qui demandent de faire des liens entre des entités et d’interpréter des relations ?  Si ces données ne sont pas suffisamment riches en information, comment les lier avec celles provenant d’autres sources, ouvertes et privées, pour les valoriser ?

La finalité de projets de données est de générer l’information la plus riche afin de répondre à des questions à la satisfaction des publics cibles. Toute initiative devrait donc débuter par un diagnostic de la disponibilité et de la qualité des données.  Cependant, comment effectuer un tel exercice sans savoir à quels besoins répondront-elles ou, plus exactement, à quelles questions devront-elles répondre ?

Trouver les bonnes questions: la dimension cognitive des projets

La dimension cognitive des projets numériques se rapporte à la sélection, l’organisation et le traitement de l’information. Ces activités doivent réunir des perspectives et compétences diversifiées: de la connaissance du domaine et des publics à la modélisation de l’information.  Il s’agit d’un travail collaboratif qui doit être réalisé en amont de la conception technique. Cette étape est rarement bien planifiée et réalisée, faute de budget, ressources ou méthode de travail. Pourtant, elle constitue le coeur du projet.  C’est, de plus, un processus qui permet d’améliorer la littératie numérique et développer des pratiques collaboratives au sein d’une organisation et d’un partenariat.

Interroger les données: repenser les vieilles interfaces 

Les vieux modèles d’interfaces de recherche influencent notre conception des questions que nous posons aux ensembles de données.  Elles forcent les utilisateurs à formuler leurs questions en fonction de critères limités. Ces interfaces pré web qui sont encore utilisées pour donner accès au contenu de catalogues en ligne  sont nettement déclassées par la recherche en langage naturel.

Cocher des critères comme la date, l’auteur, le sujet ou le titre ont assez peu à voir avec les comportements et besoins des utilisateurs.  L’indexation des  contenus et le paramétrage du moteur de recherche des sites sont généralement peu élaborés.  Par exemple, explorer les archives du journal Le Devoir est plus intéressant à partir de l’interface de Google. Il suffit de limiter la recherche au site et d’ajouter des expressions ou, même, des questions , comme ceci: « site:https://www.ledevoir.com/  causes du changement climatique ».  On peut alors explorer les textes, images et vidéos.  Les traces de nos usages ne serviront cependant pas les intérêts du média, mais le  modèle économique du moteur de recherche.

Remplacer les cas d’usage par une approche narrative

Avant de développer de nouvelles plateformes, il y aurait place à amélioration pour répondre aux  besoins d’information spécifiques des publics et accompagner le développement de services à valeur ajoutée.

Mais trouver les bonnes questions à poser requiert une  connaissance des publics cibles et, pourquoi pas, leur participation. Pour cela, il convient de remplacer l’approche technologique (cas d’utilisation) par une approche narrative, plus concrète et plus proche du phénomène informationnel (lier des données pour raconter une histoire).

When we frame information about an object we focus attention on certain aspects of that object or its history. It’s just like choosing a new frame for a painting, which then highlights different qualities of the artwork. Framing is less about the information we feature in a label and more about how we present that information.

Le sujet de cet article dépasse le domaine muséal: What makes a great museum label?

Exploiter des données plus riches de sens

Notre relation aux contenus culturels est de l’ordre du ressenti, du goût et des intérêts. Cependant, nos bases de données et catalogues fournissent une information factuelle, organisée de façon uniforme et anodine, bien loin de la diversité des cultures et expériences humaines.  D’autres métadonnées pourraient jouer un rôle aussi important que les métadonnées classiques de type catégorie-titre-auteur, pour la personnalisation des services et pour l’analyse des données d’usage.

Sous la direction d’Yvon Lemay et Anne Klein, de l’École de bibliothéconomie et des sciences de l’information, Archives et création: nouvelles perspectives en archivistique regroupe des publications de recherche sur l’exploitation des archives dans le domaine culturel (arts visuels, littérature, cinéma, musique, arts de la scène, arts textiles et Web). Cette publication devrait être lue par quiconque souhaite réfléchir sur la mise en réseaux des données sur la culture.

Indexation – Émotions – Archives, la recherche menée par Laure Guitard, se rapporte plus spécifiquement à l’enrichissement des modèles de données par la représentation de la charge émotionnelle des contenus et objets (page 151).

l’indexation – professionnelle et collaborative – pourrait permettre d’inclure l’émotion dans la description des archives afin que cette dernière soit reconnue comme une clé d’accès aux documents

Je souligne, avec cette référence, l’importance de la recherche académique et des regards croisés entre domaines d’étude pour apporter de la profondeur à des idées. Les monocultures sectorielle,  disciplinaire et technologique nuisent à nos ambitions numériques.

Renforcer le volet cognitif des projets

Il faut revoir des modèles d’indexation de contenu, ou de production de métadonnées. Disposer de données plus riches permet d’analyser la relation de l’utilisateur au contenu, de mieux connaître les publics,  de développer des algorithmes de recommandation et, finalement, d’imaginer d’autres façons de valoriser des catalogues, fonds et répertoires.

Nous ne devons pas nous laisser démonter par la complexité des projets ou, pire: brûler de précieuses ressources en « coupant les coins ronds». Nous pouvons y faire face en mettant en commun des ressources et des expertises diversifiées et en élaborant d’autres méthodes de travail. Donnons-nous du temps, mais commençons dès maintenant.

Ajout d’information concernant les cas d’usage et l’approche narrative, à la suite d’une très bonne question posée par Frédéric Julien, sur Facebook.

Extrait du commentaire de Frédéric : 

Je ne suis par contre pas certain de comprendre ce que tu entends par « remplacer les cas d’usage par une approche narrative ». Au cours de la dernière année, j’ai eu la précieuse occasion de participer à quelques exercices de consultation auprès de créateurs et usagers de données dans le cas du projet 3R. Ce que j’y entendu a énormément contribué à ma réflexion sur les cas d’usage dans le cadre de l’initiative ANL [Un avenir numérique lié]. Ces deux méthodologies ne me semblent pas du en contradiction l’une avec l’autre (ni avec ce que tu décris dans ton billet… à moins que certains détails ne m’échappent).

Réponse:

/…/ une approche narrative permet de réaliser des cas d’usage en les mettant en contexte (le « comment »). J’emploie un terme fort, « remplacer »,  pour attirer l’attention sur une étape du projet sur laquelle se fondent beaucoup d’objectifs (et d’espoirs). C’est une étape cruciale pour la mise en relation de l’information avec des utilisateurs. Elle est trop souvent escamotée ou sert uniquement à construire des exemples de requêtes.
Suivre une approche narrative ne signifie pas raconter une histoire, mais analyser des comportements, des usages, des interfaces et des structures de données pour produire des exemples qui vont démontrer l’utilité ou la valeur ajoutée du système.
Cependant, les cas d’usage réalisés de façon habituelle (comme en informatique), portent sur le « quoi » (les données, les étiquettes à mettre) alors que les éléments de la recherche et de la découverte ne sont plus les mêmes:

  • Interrogation de données liées conçue comme des requêtes sur des BD tabulaires (où est le potentiel du liage de données?)
  • Travail de terrain très rarement réalisé avec des utilisateurs finaux, dont des non-usagers (ex: non-visiteurs de musées) et des non-amateurs de certains type d’offres (ex: films québécois).
  • Confusion entre parcours de recherche et de découverte (qu’est-ce que chercher? découvrir? comment cela se produit-il dans des contextes spécifiques, avec certains supports et chez certains types d’utilisateurs ?)

 

Découvrabilité: mythes et réalité

Mise à jour 2019-05-24: ajout d’une question et sa référence, en conclusion.

La recherche du Graal de la découvrabilité, ce moyen qui accroîtra la «consommation» de nos produits culturels, peut-elle nous faire tomber dans le piège de la solution technologique qui nous fait oublier le problème ?

Solution simple et problématique complexe

Appelé « solutionnisme »  par l’historien des sciences Evgeny Morozov, c’est la proposition d’une solution technologique à un problème d’origine complexe. Ceci a pour effet d’escamoter les débats qui sont essentiels à la recherche de solutions pour le bien commun.

Moins de quatre ans se sont écoulés depuis le sommet qui a propulsé le terme « découvrabilité » jusque dans les hautes sphères décisionnelles, en culture. Depuis lors, des événements et programmes de financement de la culture ont intégré cette thématique ou certains de ces éléments les plus emblématiques, comme les métadonnées.

Je réalise, depuis quelques années, des ateliers sur la découvrabilité et les métadonnées, avec les Fonds Bell et Fonds indépendant de production. Une collaboration avec Marie-Ève Berlinger apporte à ma démarche exploratoire la dimension stratégique de la promotion numérique. C’est dans ce contexte que nous avions échangé sur les mythes de la découvrabilité, au cours du Forum avantage numérique.

Voici quelques constats qui se rapportent aux mythes qui sont spécifiques à la production de métadonnées pour les moteurs de recherche.

La découvrabilité n’est pas une finalité

La finalité d’un plan de découvrabilité est le fruit d’une réflexion stratégique. Celui-ci fournit les questions, le contexte et le cadre sans lesquels la découvrabilité n’aurait pas d’autre objectif que de fournir des données à un moteur de recherche. Ce sont les activités de marketing et de promotion qui produisent des résultats mesurables.

L’exploitation des métadonnées par les moteurs de recherche n’est qu’un des piliers de la découvrabilité. Cette approche a été illustrée dansle cadre d’un projet auquel je collabore, avec Véronique Marino et Andrée Harvey (La Cogency).

Illustration des 4 piliers de la découvrabilité, par LaCogency
Illustration tirée d’un projet de découvrabilité numérique de LaCogency.

Il est surprenant de constater que la stratégie et les moyens techniques ne sont pas intimement intégrés dans des projets numériques. Il y a une importante mise à jour des connaissances conceptuelles et techniques à opérer au sein des agences qui conseillent et accompagnent les organismes et entreprises.

La réponse n’est pas une page web

La fiche d’information qui constitue la réponse du moteur de recherche (à la droite de la liste de résultats) n’a pas pour objectif de diriger l’utilisateur vers une page web spécifique. Elle rassemble différents éléments d’information afin de fournir la réponse la plus précise possible. Il faut donc sortir de la logique de la liste de résultats et ne pas penser l’usage des métadonnées en fonction d’une destination.

Les liens entre les éléments d’information qui composent la fiche de réponse construisent des parcours qui orientent la recherche de l’utilisateur, sans nécessairement aboutir sur un site web. Par exemple, chercher une oeuvre de VanGogh, comme la Nuit étoilée, permet de mesurer la distance et les clics qui nous séparent du site web du Museum of Modern Art.

Ceci accroît la collecte des données d’usage qui permettent d’analyser l’intention, le comportement et la consommation de l’utilisateur. Plus les fonctions et choix offerts sont utiles, plus l’utilisateur demeure dans l’interface du moteur de recherche. Les agrégateurs d’information, qui font face à la désintermédiation de leur services, constateront probablement une diminution progressive du volume de données qui sont collectées sur leurs pages.

L’effet des métadonnées est dans la durée

Les résultats de l’utilisation de métadonnées pour décrire des contenus ne sont pas mesurables, au sens strict.

La qualité de l’encodage des métadonnées peut être validée, mais l’outil de test ne peut juger la logique de la description (interprétation des balises uniquement). Une validation que peu de producteurs de métadonnées semblent se donner la peine de faire. Il est également possible d’attribuer un indice de découvrabilité à  une information en fonction de critères spécifiques.

L’effet des métadonnées peut être observé sur un temps long. L’enrichissement progressif de la fiche de réponse illustre le potentiel qu’a une offre d’être liée par le moteur de recherche à d’autres informations. Il n’est pas possible de fournir des résulats immédiats et quantifiables, de façon similaire aux stratégies de référencement organique et payant de pages web.

Schema.org n’est pas le moteur de recherche

Schema est un vocabulaire commun de métadonnées qui a été développé pour les moteurs de recherche. Google recommande l’intégration des métadonnées sous forme de balises dans le code HTML d’une page afin de décrire l’offre qui y est présente. Cependant, les règles de l’algorithme évoluent au fil des expérimentations du moteur de recherche. Les métadonnées Schema qui étaient recommandées pour décrire des offres de type Movie, TVSeries et Music existent toujours. Cependant, Google n’en recommande plus l’usage et invite les entreprises concernées à faire une demande pour devenir des partenaires médias. Jusqu’où, alors, faut-il investir pour indexer une offre si le fonctionnement de l’algorithme et l’évolution du moteur de recherche nous sont inconnus ?

Une réflexion stratégique est nécessaire pour répondre à cette question. Deux avenues s’ouvrent:

1. Rendre des offres interprétables pour les moteurs de recherche (indexation) et appuyer la stratégie de référencement du site

  • Fournir uniquement les métadonnées Schema qui sont obligatoirement requises par le moteur de recherche. Ceci fait partie des bonnes pratiques du développement de sites web.
  • Tout comme pour le référencement, il est important d’assurer une veille sur l’évolution des fonctions analytiques et techniques des moteurs de recherche.

2. Valoriser les éléments d’un catalogue ou d’une collection en produisant un graphe de données liées

  • Fournir des métadonnées très riches selon le vocabulaire Schema.
  • Prévoir un important travail de modélisation (de préférence, par une personne compétente) afin de mettre en valeur des attributs et des liens, en travaillant sur les propriétés et les niveaux hiérarchiques.

Enjeux d’importance pour une stratégie numérique:

  • Aucun résultat garanti sur le traitement des métadonnées par le moteur de recherche. Ceci ne doit donc pas être l’unique objectif d’un tel projet.
  • Vocabulaire et modèle de représentation uniques: uniformisation de la représentation répondant aux objectifs d’affaires des moteurs de recherche.

Précision 2019-05-25: ce billet concerne uniquement le langage de balisage pour moteurs de recherche (métadonnées Schema) et non la représentation des connaissances avec les standards du web sémantique.

Pas de solution, mais quelques questions

L’uniformisation des modèles descriptifs est-elle un risque pour la diversité culturelle ?

La problématique de la «consommation culturelle» ne devrait-elle pas être abordée dans les deux sens ? En orientant nos projets sur la promotion,  nous oublions la relation au public et l’analyse de ce qui rend une oeuvre de création attractive. Ce rapport sur les pratiques culturelles numériques et plateformes participatives, piloté par la chercheuse Nathalie Casemajor, contient des pistes de réflexion à ne pas négliger, dont cellec-ci:

Les efforts de découvrabilité ne suffisent pas à eux seuls à créer l’appétence culturelle, et l’analyse des données consommatoires et comportementales n’est pas la panacée pour agir sur le développement des goûts et des dispositions culturelles en amont.

Nous devrions nous donner des moyens pour définir les modalités et conditions de la découvrabilité que nous souhaitons. Celles-ce se trouvent quelque part, entre le monde vu par une entreprise et celui que nous voyons au travers du prisme de nos cultures et sensibilités, d’une part,  et, d’autre part, entre lier des données pour un objectif de marketing et faire du lien social autour d’objectifs communs.

Données structurées, données ouvertes et liées: est-ce la même chose ?

Données structurées et données ouvertes et liées sont des expressions dont l’usage indifférencié peut nuire à la prise de décisions qui ont une grande importance pour la réussite d’un projet dans le domaine culturel. Par données structurées , on fait ici référence à la technique d’indexation préconisée par Google (structured data). Ces expressions désignent deux manières différentes de travailler dans le web des données. Ce billet concerne les modèles de données et outils proposés afin de documenter des ressources pour les moteurs de recherche.

Un autre billet abordera les avantages spécifiques des données ouvertes et liées.

Guide des données structurées de Google pour documenter des livres.
Guide des données structurées de Google pour documenter des livres.

Google et le web sémantique

En 2013, Google effectue un des plus importants changements sur son algorithme de recherche en plus d’une décennie.

Baptisée Hummingbird , la nouvelle mouture s’appuie sur le sens et le contexte plutôt que sur la pondération de mots clés. Elle fait également appel à un savoir encyclopédique qui est organisé comme un graphe de connaissances et qui est constitué en grande partie à partir de Freebase, une base de données structurées collaborative, acquise par Google. Cette masse de données, appelée Knowledge Graph, permet de à l’algorithme de classer l’information et, de ce fait, de savoir à quelles autres informations elle est liée. C’est une logique similaire à celle de Wikipédia, où chaque article comporte plusieurs liens internes et externes.

La nouvelle version de l’algorithme peut donc effectuer des recherches en mode « conversationnel » (Où faire réparer mon téléphone?) et, surtout, améliorer les résultats de recherche grâce aux concepts du web sémantique: des métadonnées qui donnent le sens des données et qui permettent de faire des liens qui produisent de l’information. En comprenant le sens et le contexte de la demande, il devient possible, pour le moteur de recherche, de mieux interpréter l’intention de l’individu qui la transmet.

De la liste de pages web aux résultats enrichis

Depuis, la recherche de (méta)données qui font du sens prend progressivement le pas sur la recherche de mots clés. C’est une transition que l’on peut très facilement constater sur nos écrans mobiles. Nous passons donc d’une liste de pages qui comportent les mots clés recherchés à une agrégation d’informations qui résulte de liens entre des données structurées.

Il y a toujours une recherche de pages, mais ce sont les données qui décrivent des « ressources » (personnes, choses, concepts) qui sont désormais importantes. Au web documentaire, celui où l’information est présentée métaphoriquement en pages, s’ajoute le web des données, celui où toute connaissance est de la donnée qui peut être collectée et traitée par des machines. Celles des moteurs de recherche et celles de toute entité qui souhaite s’en servir pour développer un service ou un produit qui aurait de la valeur.

Schema: représentation pour moteurs de recherche

Les données structurées sont exprimées selon un modèle de métadonnées qui a été conçu par un regroupement de moteurs de recherche (Google, Bing, Yahoo! et le russe, Yandex). Ces données sont publiées dans le code HTML des pages où sont présentées les ressources qu’elles décrivent. Ces données sont publiques, mais pas ouvertes. Mais ce sont cependant des données liées puisque le modèle Schema permet de produire des triplets (symphonie pour un homme seul (sujet) – est de type (prédicat)- électroacoustique (objet)). Quelques exemples sont présentés dans un billet précédent l’usage de données structurées par Google. Le rôle des données structurées et des liens vers Wikipédia est expliqué plus en détail dans un guide sur la documentation des contenus produit pour le Fonds indépendant de production, avec la collaboration de TV5.ca et l’appui de la SODEC.

Apprendre à documenter: une étape nécessaire

Alors, documenter une ressource à l’aide de données structurées, en intégrant celles-ci dans la page web de la ressource, est-ce « travailler pour Google » ?

Oui, bien sûr. Mais, ce n’est qu’un premier pas dans l’apprentissage pratique du rôle clé des données dans une économie numérique. Mais s’en tenir à cette étape, c’est conformer notre représentation de la culture à un modèle de représentation et à des impératifs d’affaires qui sont hors de notre contrôle et qui ne répondent à des impératifs économiques qui avantagent la plateforme.

Ne pas dépendre d’entreprises qui se placent au-dessus des lois et des États est un des enjeux qui motivent des gouvernements et des institutions à soutenir, par des politiques et des programmes de financement, des projets basés sur les principes et les technologies du web sémantique qu’ils peuvent contrôler. Nous verrons, dans un prochain billet, les opportunités qu’offrent ces technologies pour l’innovation et la promotion de la culture.

Découvrabilité et métadonnées: nous sommes nuls en documentation de contenu

La documentation des contenus devient un enjeu prioritaire quand des moteurs de recherche deviennent moteurs de réponses et de suggestions. Surtout dans le domaine des arts et de la culture.  Curieusement,  nombreuses sont les initiatives qui font dans le dilettantisme en matière d’information numérisée. Car le problème est bien d’ordre documentaire.  Petite mise en perspective à la lumière de l’actualité.

Comment nettoyer les écuries d'Augias par Christian Fauré
Comment nettoyer les écuries d’Augias, par Christian Fauré (via Gautier Poupeau, lespetitescases.net)

« From search to suggest» (Eric Schmidt, Google)

Les ventes d’enceintes acoustiques intelligentes (smart speakers) dépassent celles d’autres équipements électroniques  comme les casques de réalité  virtuelle ou les vêtements  connectés. Les grandes plateformes et leurs partenaires (de nombreux manufacturiers d’enceintes acoustiques) se livrent à une concurrence effrénée, enchaînant les itérations afin de lancer et tester de nouveaux modèles.

/…/ smart speakers have become the fastest growing consumer technology in recent times, surpassing market share gains of AR, VR and even wearables.
Smart speakers are now the fastest-growing consumer technology

Depuis peu, certains constatent que ce sont des applications et des algorithmes qui nous pointent ce que nous devrions voir ou écouter.

/…/ how consumer power can meaningfully express itself within the “Suggest” paradigm, if consumer power will continue to exist at all. If the Amazon Echo, Google Home, or whatever else that comes down the pike becomes the primary way of consuming podcasts, the radio, or music, what does the user pathway of selecting what to listen look like? How are those user journeys structured, how can they be designed to push you in certain ways? (The “Power of the Default,” by the way, is a very real thing.) How would discovery work? Which is to say, how does the market look like? Where and how does the consumer make choices? What would choice even mean?
If podcasts and radio move to smart speakers, who will be directing us what to listen to?

C’est un constat que partagent plusieurs observateurs des changements qui sont à l’oeuvre dans le web , notamment chez ceux dont la puissance s’est établie sur l’indexation et le classement de l’information. Laurent Frisch, directeur du numérique de Radio France, est l’un de ces observateurs.

Dans tous les cas, la problématique des assistants vocaux est de passer d’un monde où on pouvait faire des recherches mises en ordre par des algorithmes, nous laissant le choix de cliquer sur le résultat de notre choix, à un monde dans lequel les besoins seront anticipés avec la proposition d’une réponse unique. Il faut donc que lorsque nous avons la bonne réponse, nous puissions être trouvés et écoutés au bon moment. C’est très compliqué, c’est nouveau pour tout le monde. Les radios ont un atout : elles partent avec un temps d’avance puisqu’elles ont une matière première. Par contre, ça ne veut pas dire que ce sera automatique. Il y aura des challenges, notamment pour réussir à être des réponses pour ces assistants vocaux.
La radio en 2018 vue par Laurent Frisch

Penser/Classer (George Perec)

Nous avons un problème: nous avons abandonné l’indexation et le classement de nos ressources à des bases de données qui ne sont pas conçues pour être interopérables avec d’autres systèmes et à des spécialistes des technologies qui n’ont ni les compétences en documentation, ni les connaissances du domaine (ontologies, taxonomie).

Nous avons cessé d’investir temps et ressources dans la documentation de nos contenus lorsque la micro informatique est entrée dans nos organisations. Nous nous sommes fiés à des structures proposées par des programmeurs guidés par leurs propres objectifs et compréhension pour créer des métadonnées et des systèmes de classement. Ces systèmes nous interdisent toute visibilité sur nos contenus, collections et répertoires et toute possibilité de lier nos données aux autres données mondiales afin que nos contenus demeurent pertinents et génèrent de  la connaissance.

Les enjeux de la découvrabilité, les métadonnées propriétaires et non standards,  ainsi que la faible qualité des données sont avant tout un problème documentaire du à l’ignorance ou au rejet de méthodes et normes qui, pourtant, existent et évoluent. Ce problème ne pourra être  résolu que si nos stratégies numériques, ainsi que nos institutions d’enseignement,  passent d’une vision technocentriste à une vision systémique du numérique.  Concrètement, cela implique l’ajout de la littératie de l’information (de quoi est faite l’information numérisée et comment circule-t-elle) aux programmes de formation, l’adoption de normes pour l’acquisition et le développement d’applications et l’inclusion des compétences en sciences de l’information à toute démarche autour des données.

Comme l’a si clairement expliqué Fabienne Cabado , directrice générale du Regroupement québécois de la danse, dans un récent billet, c’est notre modèle de pensée et nos réflexes qu’il faut changer.

/…/le virage numérique ne consiste pas à numériser nos archives ni à produire les plateformes les plus grandioses, mais plutôt à transformer nos manières de regarder le monde, de le penser, de le construire et d’y évoluer. Ils l’ont dit et répété: l’innovation réside avant tout dans l’adoption d’une pensée systémique.
Perspectives numériques

En attendant  que nos leaders prennent la mesure du problème et apprennent à se servir d’autres solutions que celles auxquelles ils sont habitués, il est encourageant de constater le cheminement des idées et leur assimilation par les têtes pensantes du secteur culturel.

Découvrabilité : quand les écrans ne sont plus nécessaires 

Présentation donnée lors de la clinique d’information du Fonds Bell, le 17 octobre 2017, à la Cinémathèque (Montréal).

Mise à jour (16 février 2018):  Cette présentation accompagnait le lancement du guide Êtes-vous repérables ? Guide pratique pour documenter vos contenus , réalisé pour le Fonds indépendant de production, avec la collaboration de TV5.ca et l’appui de la SODEC .

La découvrabilité qui devrait intéresser plus particulièrement tout créateur et producteur de contenus résulte de la présence, dans le web, de données descriptives qui sont intelligibles et manipulables par des machines. Il ne s’agit pas de campagnes de promotion, ni de référencement de pages web, mais de la documentation de  contenus (textes, images, vidéo, enregistrements sonores et toutes autres types de ressources).  Ces trois types d’activité visent des objectifs spécifiques et complémentaires.

Les changements qui affectent la visibilité et la découvrabilité

La plus grande proportion du trafic sur le web est portée par les petits écrans mobiles.

Graphique: le trafic web est porté par les écrans mobiles

Liens utiles:
Smartphones are driving all growth in web traffic
Search engine market share – Mobile – Canada
Cahier de Tendances N°11 : au delà du mobile, France Télévisions

Les moteurs de recherche s’adaptent aux petits écrans.
Lorsque l’information qui décrit un contenu est disponible dans un format que les moteurs peuvent traiter, la liste des résultats de recherche passe au second plan.

Face à la surabondance d’information et de contenus, la pertinence de la recommandation devient un facteur important de fidélisation.

Google - Résultat de recherche sur téléphone

Recherche vocale et assistants virtuels: l’information sans écran.
Plus de 30 millions d’assistants vocaux dans les foyers, aux États-Unis, d’ici la fin de l’année

Assistants virtuels ou assistants vocaux

Liens utiles:
More than 30 million ‘voice-first’ devices in US homes by year end [Report]
Report: 57% of smart speaker owners have bought something with their voice
Gartner Predicts 30% Of Searches Without A Screen In 4 Years

Ces nouvelles interfaces du web n’ont pas d’écran et ne peuvent dont nous répondre en nous fournissant une liste de résultats.
« Enfin et c’est cela qui pose à mon sens le plus gros problème dès que l’on sort de la seule sphère « commerciale », il y a … « le choix d’Alexa », c’est à dire l’idée que bien sûr Amazon / Alexa ne va pas nous « lire » une série de réponses suite à notre requête mais nous en proposer une seule, mettant naturellement en évidence des produits vendus par la marque hôte.» (La voix et l’ordre, billet d’Olivier Ertzscheid).

Moteurs de réponses et de suggestions
Lorsque les données qui décrivent un contenu sont accessibles, intelligibles et manipulables par des applications, elles peuvent être triées par des algorithmes et liées à d’autres données qui décrivent un même auteur, lieu, création, objet, producteur, etc.  Un contenu peut se trouver sur la parcours d’un internaute des décennies après sa création.

Liens utiles:
Les sites web sont-ils en voie de disparition ?
#DIVERTISSEMENT Les algorithmes vont-ils mettre fin à la tyrannie du choix ?
How Netflix will someday know exactly what you want to watch as soon as you turn your TV on

Les moteurs de recherche comprennent-ils nos contenus?

Les pages web sont faites pour être lues par des humains. Les machines ne comprennent pas le contenu de la page, mais elles peuvent manipuler des données qui s’y trouvent  lorsque celles-ci sont mises en contexte grâce à des métadonnées et sont dans un format qu’elles reconnaissent.

Pour savoir si un moteur de recherche peut faire des liens entre votre websérie et d’autres informations disponibles dans le web, il suffit de chercher celle-ci afin de voir si une fiche d’information est produite.

Validation des données structurées: recherche de la série Carmilla.
Chez Google, la fiche d’information, appelée Knowledge card, est générée grâce à  la mise en contexte des données qui décrivent le contenu avec son modèle de classification des connaissances (Knowledge graph). Ces mêmes données descriptives sont mises en relation avec celles d’autres plateformes comme Wikidata (les données structurées de Wikipédia) et, selon le contexte, avec les données de plateformes spécialisées.

Dans le domaine du cinéma, de la vidéo et de la télévision, nous pouvons retrouver les données issues des agrégateurs IMDb (Internet Movie Database,  propriété d’Amazon), AlloCiné et Rotten Tomatoes. Notez que le contenu de ces plateformes n’est pas produit par une seule organisation, mais par des utilisateurs et/ou des producteurs de contenus.

Ce sont des données structurées qui, chez les moteurs de recherche comme Google et Bing , permettent de faire des liens sémantiques qui fournissent une description succincte ou détaillée  d’un contenu dans une fiche d’information. C’est cette fiche qui tend à occuper un espace de plus en plus important sur nos écrans.

De la même manière qu’il a fourni aux développeurs des instructions pour faciliter le référencement de sites web, Google fournit désormais des instructions et des outils pour encourager la production de données structurées. L’outil de test des données structurées détecte la présence de ces données dans une page web et, le cas échéant,  signale les erreurs à corriger et les améliorations possibles.

Google: validation des données structurées: page d'accueil de Louis-Jean Cormier.

Il est également possible de produire des métadonnées pour décrire un contenu qui est présent dans une page web sans connaître le modèle de métadonnées Schema et sans programmation. L’outil d’aide au balisage des données structurées qui est proposé par Google permet de copier les données qui sont encodées en JSON-LD, un format pour les données liées, et de les coller dans le code HTML de la page web où se trouve le contenu.

Google: outil de balisage de données structurées, page web de Vincent Vallières

Cet outil présente un intérêt supplémentaire: il indique les informations qui devraient apparaître dans la page de présentation d’un contenu. De trop nombreuses pages web où sont présentés des films, spectacles, livres, pièces musicales ou œuvres d’art ne contiennent pas le minimum d’information qui permettrait aux moteurs de recherche de les lier à d’autres informations dans le web.

Plus l’information qui décrit le contenu est détaillée et riche, plus grand est le potentiel de celui-ci d’être lié à d’autres contenus et donc, d’être découvert.

Documenter nos contenus, n’est-ce pas travailler pour Google et cie?

Documenter (ou indexer) un contenu, tout comme faire du référencement de pages web, c’est normaliser et organiser la  représentation de celui-ci.  C’est, effectivement, contribuer à l’amélioration continue des applications et des algorithmes des moteurs de recherche.

Mais c’est également une étape nécessaire pour apprendre à nous servir de nos données et, par la suite, développer nos propres outils de découverte, de recommandation et de reconnaissance de ceux qui ont contribué à la création et à la production  d’œuvres.

Web des données: les connexions qui transforment

Web des données depuis 4 ans (2010).

Comme il est possible de le constater en effectuant une recherche avec Google, le web se transforme progressivement et, avec lui, les systèmes d’information.

Nous passons de bases données qui sont conçues pour retrouver une information à des données ouvertes et liées qui, publiées dans le web, permettent à des machines d’établir des connexions et de générer, par inférence, une information qui ne se trouve pas dans notre base de données.

Sélection de lectures parmi mes signets les plus récents sur Diigo:

Connexion

Le web a été conçu pour être exploré par des humains et par des machines. Pour les modèles d’affaires numériques, la découverte de ce que nous ignorions a beaucoup plus de valeur que la recherche de choses que nous connaissons.  C’est, notamment, pour cette raison que les géants du numériques investissent dans les technologies du web sémantique (ou web des données) car elles permettent de représenter les connexions possibles entre différents éléments d’information.

“The value that I see going forward is the linking part of the data environment,” Wiggins added. “You start searching at one point, but you may be linked to things you didn’t know existed because of how another institution has listed it. This new system will show the relationship there. That’s going to be the piece that makes this transformative. It is the linking that is going to be the transformative.”

Searching for Lost Knowledge in the Age of Intelligent Machines – As search engines are radically reinvented, computers and people are becoming partners in exploration.

Curation de données

Nouvelle compétence clé: la curation de données, à la quelle on ajoutera le nécessaire esprit critique qui ne peut être remplacé par les algorithmes.

Avec tous les algorithmes statistiques et tous les outils d’analyse automatique de données (« big data analytics ») du monde, nous aurons encore besoin d’hypothèses causales, de théories et de systèmes de catégorisation pour soutenir ces théories. Les corrélations statistiques peuvent suggérer des hypothèses causales mais elles ne les remplacent pas. Car nous voulons non seulement prédire le comportement de phénomènes complexes, mais aussi les comprendre et agir sur la base de cette compréhension. Or l’action efficace suppose une saisie des causes réelles et non seulement la perception de corrélations. Sans les intuitions et les théories dérivées de notre connaissance personnelle d’un domaine, les outils d’analyse automatique de données ne seront pas utilisés à bon escient. Poser de bonnes questions aux données n’est pas une entreprise triviale !

La litéracie en curation de données

Médiation

Comment éveiller des décideurs aux changements radicaux qui sont annoncés partout, mais qui ne s’expérimentent pas dans le quotidien puisqu’il se transforme de façon beaucoup plus lente et progressive ?

In addition to the artworks and product demos, there are video infographics explaining what companies can and are doing with your data right now, whether it’s credit score calculation, email metadata analysis, or how your wifi-enabled smartphone is basically always snitching on you.

Once you’re thoroughly alarmed by the reality of what we have given up in freedom for the conveniences wrought by our ad-driven world, the team has helpfully created a Data Detox Bar where you can learn about reasserting control over your network existence and limiting your exposure. And the entire exhibit is staffed with all white-wearing “Ingeniouses” who will answer questions or just provide a shoulder to scream into after discovering that there is no such thing as “anonymized data.”

For the truly curious, of which I am one, there are workshops and presentations that provide an even deeper look into the gaping maw of our networked world.

Go to The Glass Room. If Black Mirror Had a Showroom, This Would Be It

Industries culturelles: la vraie nature de la transition numérique

Initialement publié dans le blogue de Direction informatique, le 7 décembre 2015.

Le plus grand défi imposé par la révolution numérique aux industries culturelles et créatives n’est pas de nature technologique mais organisationnelle.  Nous ne voyons encore que trop peu d’expérimentations hors des modèles de création et de distribution traditionnels. Qu’est ce qui retient nos entreprises culturelles?

Lors du Sommet sur la découvrabilité, qui était organisé par le CRTC et l’ONF et qui avait lieu à Montréal la semaine dernière, j’ai eu l’impression qu’il fallait encore convaincre les participants que les changements qui bouleversent leur univers sont, non seulement irrémédiables, mais qu’ils s’accélèrent. Pourtant, nous ne sommes plus uniquement en présence de nouveaux usages numériques, mais d’une nouvelle génération de « consommacteurs » autour desquels s’élaborent des services et des outils. Un public plus difficile à joindre et qui a sa propre grammaire, comme le mentionnait Suzanne Lortie, professeur et directrice du programme en stratégie de production culturelle et médiatique à École des médias de l’UQAM, en parlant des YouTubers, ces jeunes créateurs de contenus qui sortent des codes habituels de l’audiovisuel et ont des succès d’audience.

Il y a pourtant plusieurs années maintenant qu’ont été publiés les rapports du CALQ et de la SODEC sur le nécessaire virage numérique.  Il est donc fort probable que tous étaient déjà bien au fait des transformations qui affectent la création, la distribution et la consommation de contenus culturels.  C’est pourquoi les conférences qui composaient la première partie de l’événement n’ont pas déclenché d’électrochoc mais ont rappelé l’urgence d’agir face à des écosystèmes et des modèles qui se mettent en place en ne nous laissant qu’un rôle de fournisseur de contenus.

La table ronde qui réunissait des experts, praticiens et enseignants a permis d’entrevoir, trop brièvement, ce qu’un réseau de compétences et d’expériences diversifiées pourraient apporter à des projets novateurs.  Ces « partenariats improbables » évoqués par Sylvain Lafrance, professeur à HEC Montréal et ancien vice-président exécutif de Radio-Canada, ne seraient-ils pas plutôt des alliances naturelles dont on a ignoré le potentiel ?

Face au rouleau compresseur culturel des grandes plateformes numériques ne faudrait-il pas développer un réseau de partenaires afin de miser sur la mutualisation de ressources et de compétences? Et, pourquoi, tel que le suggérait le conférencier principal et consultant en nouveaux médias, Pascal Lechevallier, ne pas établir des partenariats à l’échelle de la francophonie ? C’est cette même ouverture sur le monde et les marchés francophones, que réclamait Jean-Daniel Nadeau, journaliste au Devoir, en dénonçant la myopie des médias, à la suite du Congrès de la fédération des journalistes du Québec.

Ces questions avaient pourtant déjà été soulevées en 2012, lors d’un forum France-Canada sur les enjeux des contenus numériques, organisé par le Conseil des technologies de l’information et des communications. Plusieurs des participants au sommet de la semaine dernière y étaient d’ailleurs présents.

Le véritable défi pour les contenus culturels à l’ère numérique est de sortir d’un modèle de création et de production qui n’est plus supporté par l’écosystème. Comme je l’ai démontré dans un billet précédent, la vraie nature du changement est culturelle: il faut abattre les silos disciplinaires et organisationnels pour connecter nos réseaux de compétences et mettre en commun nos savoirs.

Ce sont les réseaux collaboratifs qui permettent de décoder les signaux faibles du changement, de varier les perspectives sur une problématique et d’élaborer un prototype de solution. Pourquoi des organisations qui ont des enjeux communs ne collaboreraient-elles pas ensemble pour expérimenter des solutions? Parmi nos créateurs et nos entreprises culturelles, quels sont ceux et celles qui rechercheront ces « partenariats improbables »?

Québec numérique: le vrai changement n’est pas technologique

Jeu de la transition numérique - Fing
Le jeu de la transition numérique – Fing

Initialement publié dans le blogue de Direction informatique, le 4 novembre 2015.

Peut-on faire entrer le Québec dans l’ère numérique avec une démarche, des politiques et des programmes de l’ère industrielle?

C’est pourtant l’impression que donne la consultation annoncée il y a une quinzaine de jours par le gouvernement. Comment, alors, échapper au darwinisme numérique, cette sélection naturelle des cerveaux qui met hors jeu ceux qui n’ont pas appris à se réinventer?

La véritable nature du changement

S’il s’agissait uniquement d’un enjeu technologique, la modernisation des infrastructures et des équipements constituerait une piste de solution toute tracée. Cependant, les défis auxquels la société, les industries et les institutions font face sont d’une toute autre nature. Il est important de rendre explicite cette « transformation numérique » dont on parle afin de bien saisir la véritable nature d’une transformation qui est souhaitée ou redoutée, selon notre niveau de confort face à un monde qui change.

Le modèle mental de l’ère industrielle

Consultant et conférencier, Fred Cavazza  analyse et commente la progressive adoption des nouveaux usages par les entreprises depuis les premiers âges du web.  Selon lui,  il est tentant d’adopter de nouvelles technologies, comme un site de commerce en ligne, sans opérer les transformations qui sont pourtant vitales pour les dirigeants et organisations de l’économie numérique. Il insistait encore tout récemment sur l’urgence d’acquérir les connaissances et aptitudes qui sont essentielles à la transformation:

/…/même si c’est plus valorisant et beaucoup moins risqué, résistez à l’envie de procéder à des transformations de surface pour gagner du temps. L’important n’est pas de sauver les apparences, mais de s’intéresser à la partie immergée de l’iceberg. Pour ce faire, la formation est un élément-clé pour transmettre rapidement des savoirs, faire évoluer les mentalités et initier une dynamique de changement en interne.

Victime ou acteur du changement?

Mais  pourquoi changer si tout fonctionne encore de manière acceptable? En affaires, comme dans notre vie personnelle, le changement nous est imposé par des circonstances extérieures. Nous ne modifions nos stratégies et nos projets que lorsque nous rencontrons des écueils ou que nous sommes en situation d’échec. Certains esprits clairvoyants tentent d’identifier et de décoder les signaux faibles des discontinuités afin d’avoir le temps de se repositionner. Or, en général, par aversion aux efforts intellectuels et matériels que requiert tout changement, la majorité des individus et des organisations attendent d’être au pied du mur pour réagir. Ce fut le cas des médias. C’est actuellement le cas, entre autres, du commerce de détail et c’est peut-être déjà le cas de plusieurs institutions.

Le numérique, c’est complexe

La révolution numérique étant un phénomène qui transcende les secteurs d’activité humaine, sa définition varie selon la perspective de celui ou celle qui l’expérimente ou l’observe. Cependant, une des plus efficaces démonstrations de la complexité et de l’envergure du changement est l’excellente vidéo (moins de 8 minutes) produite par Michel Cartier il y a déjà cinq ans: Êtes-vous prêts pour le 21e siècle.

Mais alors, comment réussir à prendre le virage numérique avant de frapper le mur? Certainement pas en adoptant des solutions simplistes, limitées aux avancées technologiques et compartimentées par secteur d’activité. Et, surtout pas, en excluant la dimension humaine et sociale du phénomène. Peter Drucker a relevé dès 1967 cet enjeu incontournable de la révolution numérique:

We are becoming aware that the major questions regarding technology are not technical but human questions,

Si la maîtrise des nouveaux outils et usages, qu’il s’agisse de mobilité, d’objets connectés ou de science des données, nous accordait une certaine maturité technologique, il manquerait malgré tout à nombre de nos élus et dirigeants la capacité ou la volonté de sortir du schéma mental qui conditionne actuellement leurs décisions.

Connecter les réseaux

Évidement, on ne devient pas visionnaire en suivant une formation, mais on peut se mettre à l’écoute de ceux qui décodent et expérimentent les changements.  On peut également se sensibiliser aux enjeux qui bouleversent les écosystèmes socioéconomiques comme l’on fait les élus, ailleurs dans le monde, qui ont rassemblé les forces vives de l’innovation dans divers domaines au cours d’états généraux ou d’assises publiques.

Comment transformer les mentalités, les usages et les modèles afin que des écosystèmes complets se reconfigurent et que nous ne devenions pas que les clients, mais les bâtisseurs de la nouvelle économie? Dans un billet publié récemment, j’écrivais : « Si nous retirions le mot « numérique » de l’expression « transformation numérique », nous inviterions probablement les bonnes personnes autour des tables de discussion ».

Sommes-nous prêts, élus, dirigeants, chercheurs, créateurs et citoyens, pour ce type de changement?

Commerce électronique: deux bonnes raisons pour aller voir ailleurs

Initialement publié dans le blogue de Direction informatique, le 18 décembre 2013.

Lorsqu’on parle de commerce électronique au Québec, il est souvent question de stratégie et de technologie, mais rarement d’information. Pourtant, qui n’a déjà fait ou entendu ce genre de commentaire : « C’est plus facile à trouver avec Google que sur le site de [XYZ]! »?

Tout comme l’information stratégique, l’organisation et l’exploitation des données concernant l’offre commerciale ne semblent pas encore faire partie des enjeux prioritaires de trop d’entreprises.

Labyrinthe de la Cathédrale de Reims

Une question d’information

Selon une étude récemment publiée par le CEFRIO, malgré la croissance du nombre d’achats en ligne, ceux-ci sont majoritairement effectués à l’extérieur du Québec. Quel dommage pour notre économie! Parmi les raisons qui pourraient expliquer cette préférence, il y en a deux pour lesquelles il serait tout à fait possible d’apporter des correctifs :

1. Le catalogue de produits n’est pas terrible

Les géants du commerce en ligne, ainsi qu’un nombre croissant de grandes marques américaines, investissent dans la mise en valeur de leur offre commerciale sur Internet en ouvrant aux internautes de très efficaces catalogues de produits.

Cela fait plusieurs années que des sites de commerce européens déploient cette force de frappe numérique. Il suffit, lors d’un séjour outre-mer, de chercher un simple appareil électro-ménager en ligne pour se voir proposer différentes marques et prix à même les résultats affichés par Google. Par ailleurs, plusieurs grandes enseignes s’intéressent au web sémantique afin d’ajuster leur moteur de recherche interne aux besoins exprimés de façon non explicite.

Désolée d’insister : les métadonnées descriptives sont au cœur de la recherche sur Internet. Les moteurs de recherche raffolent particulièrement de celles qui s’appuient sur des formats standards car elles sont faciles à interpréter et à contextualiser. Or, la plupart des catalogues en ligne au Québec ne sont constitués que de fiches d’information qui sont fournies par les manufacturiers. Résultat : il y a aucun format commun et on utilise un vocabulaire qui s’adresse davantage au service de l’approvisionnement qu’à la clientèle cible.

Enrichir les données d’une fiche produit avec des métadonnées permet d’ouvrir un catalogue à un grand nombre d’applications de recherche, et ainsi, de diffuser plus largement une offre qui, autrement, restera confinée au site Internet d’origine.

De tous les secteurs d’activité au Québec, par exemple, seule la musique connaît une initiative liée aux métadonnées. Il s’agit de TGiT, qui promeut l’adoption de métadonnées standards incrustées aux fichiers MP3 afin d’intensifier la présence numérique des créations québécoises.

La concertation autour de normes requiert des efforts considérables de la part de l’ensemble des acteurs d’un écosystème, mais c’est à ce prix que s’acquiert une présence forte et une certaine autonomie face aux géants du web comme Amazon et Apple.

2. La recherche sur ce site est une corvée

L’accessibilité et la qualité de l’information concernant les produits et leurs processus d’achat sont à l’origine de l’insatisfaction de nombreux consommateurs.

Si la partie transactionnelle peut être améliorée par des spécialistes de l’interface utilisateur, l’architecture de l’information devrait être élaborée avec les méthodes des sciences de l’information. De trop nombreux catalogues en ligne, incluant ceux des grandes entreprises, n’ont pas de schéma de classification, de catégorisation et de métadonnées cohérents et évolutifs qui permettraient aux moteurs de recherche internes et externes d’être plus efficaces.

Les moteurs de recherche internes sont rarement paramétrés adéquatement et cela constitue le plus grand irritant : il y a trop de résultats ou bien aucun résultat, le tout sans proposition d’alternative.

Un autre sujet d’amélioration est la recherche à facettes, qui permet de trier des résultats en fonction d’attributs spécifiques. Ces attributs se limitent habituellement au prix et à la marque, alors que d’autres informations plus utiles, comme les caractéristiques propres au type de produit, n’y sont pas.

Par exemple : pour un convecteur de 150 watts, on devrait proposer linéaire, thermostat intégré, puissance, spécialité (p. ex. un chauffe-serviettes). C’est un investissement qui permet de faciliter la recherche et, donc, d’accroître les ventes et de rentabiliser ainsi le coût d’acquisition de la technologie.

De plus, ces attributs permettent non seulement de contextualiser l’offre (p. ex. la variété des options), mais également d’enrichir l’analyse des données sur les besoins de la clientèle.

Le catalogue de produits demeure le maillon faible du commerce électronique au Québec. Pour trop d’entreprises, c’est encore une brochure ou, au mieux, une arborescence de site web. Mais pour les plateformes commerciales à succès, il s’agit plutôt d’un ensemble de données structurées s’adressant aux consommateurs afin de faciliter leurs décisions d’achat. Et pour celles qui sont entrées dans l’économie numérique, c’est aussi la composante d’un système d’information stratégique.

Pour Noël 2014, les sites de commerce en ligne seront-ils enfin passés en mode « information » au Québec?