
Orienter toute initiative de découvrabilité vers la production de données relève de la pensée magique selon laquelle la technologie est la solution à toute problématique, aussi systémique et complexe soit-elle.
Dans le domaine culturel plus particulièrement, ce solutionnisme est porté par l’espoir d’accroître la visibilité des offres afin d’en encourager la consommation. Ceci a pour conséquence que nous avons des projets numériques sans planification stratégique et dont la méthodologie de réalisation n’est pas adaptée au domaine de l’information.
À ceci s’ajoutent les mécanismes de découvrabilité mentionnés dans de nombreux documents, conférences et vidéos, sans être clairement expliqués. De quels systèmes ou applications parle-t-on? Comment fonctionnent-ils? Quels résultats peut-on en attendre? Mystère…
La méthodologie, talon d’Achille de la découvrabilité
La « découvrabilité » n’est un pas un enjeu de données, mais de maturité des connaissances sur le Web et les différents systèmes qui s’y trouvent. Il y a très peu d’expertise réelle, tant au sein des équipes de projet qu’au sein des ministères et responsables de programmes, sur des sujets comme le fonctionnement de Google, les enjeux du choix d’une norme ou d’un modèle de données et les méthodologies de conception de structures d’information.
On n’a pas encore invité les spécialistes des diverses plateformes, technologies et sciences de l’information à constituer et actualiser une base de connaissances partagées sur ces questions. Par ailleurs, les enjeux de découvrabilité et les nouveaux milieux documentaires ne sont toujours pas des sujets d’intérêt pour le Congrès des professionnel.le.s de l’information.
En conséquence, la méthodologie est le talon d’Achille de la plupart des projets. Lorsque ceux-ci débutent avec des maquettes de pages web ou des interfaces de recherche, on s’interroge sur la prédominance de l’apparence visuelle sur la conception des structures d’information.
Sans une étape préalable d’analyse stratégique, la production de données comme solution-miracle de visibilité est un projet risqué. Celui-ci comporte de nombreux angles morts tels que les préférences et comportements des publics, les changements démographiques ou une vue d’ensemble des productions ou offres d‘un secteur donné. Surtout, l’absence d’objectifs concrets et mesurables comme l’augmentation de la vente de billets ou l’acquisition d’une nouvelle clientèle est un problème récurrent: comment être sûr d’améliorer ce qui n’a pas d’abord été mesuré?
Au final, tout miser sur la production de données ne compense pas l’obsolescence de modèles industriels et commerciaux pré-numériques, ni ne prend en compte la transformation des usages.
Halte au solutionnisme!
Bien identifier un problème ou définir un besoin est un projet en soi. Cette étape essentielle est pourtant souvent escamotée, faute de budget et d’échéancier adéquat. Il est alors difficile de cerner le périmètre du projet, en écartant des options non nécessaires tout en tenant compte des contraintes de l’organisation.
Avant de se lancer dans la production de données et métadonnées, il faut donc impérativement se questionner sur le but du projet afin de l’aiguiller vers l’environnement technologique approprié et, enfin, avoir une bonne visibilité sur le type de travail à réaliser dans cet environnement. Par exemple, la création d’une base de données, d‘éléments de Wikidata et d’un jeu de données ouvertes relèvent de technologies distinctes qui n’ont pas de langages et de structures communes. Ce sont donc des types de projet différents ne visant pas les mêmes objectifs et ne faisant pas appel aux mêmes expertises.
Et mes données, alors ?!?
Dans le prochain article, nous verrons où les données et métadonnées sont vraiment utiles et comment des contenus bien rédigés sont souvent plus efficaces en terme de découvrabilité.