Archives par mot-clé : sémantique

Données ouvertes et liées: le web comme base de données

Les données ouvertes et liées (linked open data) sont au cœur des grands projets numériques en culture et leur potentiel va bien au-delà de l’amélioration de la découvrabilité de contenus.

Un web plus intelligent

En 2001,  une décennie après avoir inventé une façon de partager des documents en réseau  (World Wide Web), Tim Berners-Lee propose de renforcer cet espace de collaboration en rendant des données plus facilement utilisables et interprétables par des machines.  Il décrit, dans un article, les objectifs et éléments du web sémantique.  Selon cette extension du web, des données qui sont structurées (par exemple, les métadonnées d’un catalogue de films) peuvent être partagées et réutilisées, indépendamment des enjeux d’interopérabilité technologiques, systémiques et même linguistiques.  D’abord, une mise en contexte sur cette évolution du web qui est également appelée « web de données ».

De stockage centralisé à diffusion décentralisée

La base de données n’est pas conçue pour être interopérables avec toutes les autres bases de données. C’est un mode de gestion centralisée qui date d’avant le web, ses standards et la décentralisation de l’information.  Chaque base de données a une structure et des identifiants qui lui sont spécifiques. De plus, les relations entre les données sont induites, c’est à dire qu’elles ne sont pas exprimées sous forme de données mais par la structure de la base.  Emmagasinées dans une base de données, elle sont donc inaccessibles et difficilement interprétables par des logiciels.  C’est pourquoi, pour que ces données puissent être réutilisées et reliées entre elles, il faut qu’elles soient ouvertes et liées.

Données ouvertes  pour être accessibles

La plupart des données ouvertes qui sont à notre disposition, au Québec et au Canada,  sont disponibles selon des licences qui spécifient les conditions de leur réutilisation. Cependant, celles-ci se trouvent dans des silos qui freinent leur exploitation. Il n’y a pas de structure, de métadonnées et de formats communs entre les jeux de données. Il est donc impossible, pour un agent automatisé, comme une application de recherche, de trouver, parmi les fichiers, les données qui fournissent l’information recherchée.  Il convient alors de les publier « dans le web » sous forme de données liées pour ne pas laisser d’autres sources d’information ou d’autres contenus culturels répondre aux intentions des internautes.

Données ouvertes et liées pour être référencées dans le web

Des données liées sont des données qui sont intelligibles dans un format compréhensible par des machines.  De manière similaire à une page web, on publie une donnée dans le web en lui donnant une adresse ou URI (Uniform Resource Identifier) selon le même protocole de transmission (HTTP). Grâce aux URI qui les identifient, les données ouvertes sont référencées sur le web.  À l’aide des ressources qui sont décrites par les URI, le web sémantique « met en place deux notions très importantes, soit (1) référer à des concepts (et non pas du texte) et (2) faire des liens entre ces concepts. »  Cette distinction entre les recherches navigationnelle (mots clés) et informationnelle (concepts) se trouve dans une très éclairante initiation au web sémantique rédigée par Caroline Barrière, chercheuse en traitement automatique des langues.

C’est en faisant des liens vers ces ressources , à partir de nos propres données, qui sont-elles-mêmes sous forme d’URI, que nous créons des réseaux de données. Ces réseaux permettent à notre culture d’être référencée, trouvée et réutilisée.  En voici un exemple:

Croiser Robert Lepage, François Dompierre et Dominique Michel à la Bibliothèque nationale de France

La mise « dans le web » des données de la Bibliothèque nationale de France a débuté en 2011. C’est un des projets de données ouvertes et liées qui sont soutenus par l’État français, conformément à la Feuille de route stratégique sur les métadonnées culturelles.

Auteurs liées à Laurie Anderson dans data.bnf.fr, les données ouvertes et liées des collections de la Bibliothèque nationale de France.
Auteurs liées à Laurie Anderson dans data.bnf.fr, les données ouvertes et liées des collections de la Bibliothèque nationale de France.

La version web sémantique de la Bibliothèque nationale de France fournit de l’information beaucoup plus utile qu’une liste de documents correspondant aux mots recherchés: un nouveau mode d’accès à la connaissance. Grâce à ses données ouvertes et liées, la BnF rend visible les relations entre des ressources, des personnes et des activités.

C’est ainsi  qu’une recherche sur la compositrice et plasticienne Laurie Anderson nous fait naviguer de la musique au cinéma, en passant par les arts de la scène. En suivant les liens des contributions communes avec d’autres auteurs, on croise Yves Jacques et Robert Lepage (La face cachée de la lune). Et chez Robert Lepage, on peut voir les liens pointant vers les oeuvres qui ont influencé sa création, croiser Denys Arcand et jeter un coup sur une partie de sa filmographie pour découvrir les oeuvres du compositeur François Dompierre et une partie de la carrière de l’actrice Dominique Michel.

Dommage qu’il y ait si peu d’images libres de droits pour mieux représenter les personnes et les créations qui font notre culture. Il faudrait prendre l’habitude de contribuer à Wikimedia Commons, la base de données multimédia à laquelle s’alimentent des projets comme celui de BnF.

Connaissance augmentée et distribuée

Nous pouvons accroître la découvrabilité de notre culture de façon pérenne et innovante. Il est également possible d’étendre la connaissance que nous avons de nos propres ressources en liant nos données entre elles. Nous pourrions alors l’enrichir par des liens vers d’autres sources de données ouvertes et liées qui contiennent de l’information à propos de notre culture et de notre patrimoine, comme BnF, Digital Public Library of  America, MusicBrainz ou VIAF.

Ce ne sont pas les moyens qui manquent pour commencer à expérimenter de nouvelles manières de valoriser des données culturelles.  Un de ces moyens est, par exemple,  le téléversement des données dans Wikidata.

Mais, face à la complexité des enjeux techniques des métadonnées (pour preuve: cette typologie des métadonnées pour le patrimoine culturel), il manque une vision d’ensemble des parcours possibles.  Pour cela, il faut rassembler les compétences informationnelles et technologiques nécessaires pour aider des organismes ou des initiatives collectives à faire des choix afin de démarrer des projets rapidement.

Pourrait-on rêver d’un regroupement interdisciplinaire sur les données ouvertes et liées pour accompagner les démarches et projets dans le secteur culturel ?

Données liées et recommandation

I want AI-driven products to come with questions, suggestions or answers I wouldn’t have thought of.

Design Principles for AI-driven UX, Joël Van Bodegraven

Vers le métaweb. Matrice du niveau de connectivité sociale et informationnelle de Nova Spivack

Le web sémantique est cette évolution du web dont une des formes est l’utilisation d’un modèles de données structurées par des moteurs de recherche comme Google. Faire des relations sémantiques entre des données, à l’aide de métadonnées, facilite le raisonnement automatisé sur des inférences. Le web sémantique favorise la découvrabilité, mais permet surtout de repousser les limites que sont nos modèles de pensée et nos systèmes actuels.

Il est essentiel d’améliorer nos systèmes d’information et nos processus et d’adopter les meilleures pratiques du web des données  (diapos à visionner absolument) pour produire des données facilement exploitables.

Données structurées, données ouvertes et liées: est-ce la même chose ?

Données structurées et données ouvertes et liées sont des expressions dont l’usage indifférencié peut nuire à la prise de décisions qui ont une grande importance pour la réussite d’un projet dans le domaine culturel. Par données structurées , on fait ici référence à la technique d’indexation préconisée par Google (structured data). Ces expressions désignent deux manières différentes de travailler dans le web des données. Ce billet concerne les modèles de données et outils proposés afin de documenter des ressources pour les moteurs de recherche.

Un autre billet abordera les avantages spécifiques des données ouvertes et liées.

Guide des données structurées de Google pour documenter des livres.
Guide des données structurées de Google pour documenter des livres.

Google et le web sémantique

En 2013, Google effectue un des plus importants changements sur son algorithme de recherche en plus d’une décennie.

Baptisée Hummingbird , la nouvelle mouture s’appuie sur le sens et le contexte plutôt que sur la pondération de mots clés. Elle fait également appel à un savoir encyclopédique qui est organisé comme un graphe de connaissances et qui est constitué en grande partie à partir de Freebase, une base de données structurées collaborative, acquise par Google. Cette masse de données, appelée Knowledge Graph, permet de à l’algorithme de classer l’information et, de ce fait, de savoir à quelles autres informations elle est liée. C’est une logique similaire à celle de Wikipédia, où chaque article comporte plusieurs liens internes et externes.

La nouvelle version de l’algorithme peut donc effectuer des recherches en mode « conversationnel » (Où faire réparer mon téléphone?) et, surtout, améliorer les résultats de recherche grâce aux concepts du web sémantique: des métadonnées qui donnent le sens des données et qui permettent de faire des liens qui produisent de l’information. En comprenant le sens et le contexte de la demande, il devient possible, pour le moteur de recherche, de mieux interpréter l’intention de l’individu qui la transmet.

De la liste de pages web aux résultats enrichis

Depuis, la recherche de (méta)données qui font du sens prend progressivement le pas sur la recherche de mots clés. C’est une transition que l’on peut très facilement constater sur nos écrans mobiles. Nous passons donc d’une liste de pages qui comportent les mots clés recherchés à une agrégation d’informations qui résulte de liens entre des données structurées.

Il y a toujours une recherche de pages, mais ce sont les données qui décrivent des « ressources » (personnes, choses, concepts) qui sont désormais importantes. Au web documentaire, celui où l’information est présentée métaphoriquement en pages, s’ajoute le web des données, celui où toute connaissance est de la donnée qui peut être collectée et traitée par des machines. Celles des moteurs de recherche et celles de toute entité qui souhaite s’en servir pour développer un service ou un produit qui aurait de la valeur.

Schema: représentation pour moteurs de recherche

Les données structurées sont exprimées selon un modèle de métadonnées qui a été conçu par un regroupement de moteurs de recherche (Google, Bing, Yahoo! et le russe, Yandex). Ces données sont publiées dans le code HTML des pages où sont présentées les ressources qu’elles décrivent. Ces données sont publiques, mais pas ouvertes. Mais ce sont cependant des données liées puisque le modèle Schema permet de produire des triplets (symphonie pour un homme seul (sujet) – est de type (prédicat)- électroacoustique (objet)). Quelques exemples sont présentés dans un billet précédent l’usage de données structurées par Google. Le rôle des données structurées et des liens vers Wikipédia est expliqué plus en détail dans un guide sur la documentation des contenus produit pour le Fonds indépendant de production, avec la collaboration de TV5.ca et l’appui de la SODEC.

Apprendre à documenter: une étape nécessaire

Alors, documenter une ressource à l’aide de données structurées, en intégrant celles-ci dans la page web de la ressource, est-ce « travailler pour Google » ?

Oui, bien sûr. Mais, ce n’est qu’un premier pas dans l’apprentissage pratique du rôle clé des données dans une économie numérique. Mais s’en tenir à cette étape, c’est conformer notre représentation de la culture à un modèle de représentation et à des impératifs d’affaires qui sont hors de notre contrôle et qui ne répondent à des impératifs économiques qui avantagent la plateforme.

Ne pas dépendre d’entreprises qui se placent au-dessus des lois et des États est un des enjeux qui motivent des gouvernements et des institutions à soutenir, par des politiques et des programmes de financement, des projets basés sur les principes et les technologies du web sémantique qu’ils peuvent contrôler. Nous verrons, dans un prochain billet, les opportunités qu’offrent ces technologies pour l’innovation et la promotion de la culture.

Trois enjeux communs pour les métadonnées en culture

Voici trois enjeux dont il faudrait discuter, de façon prioritaire, au sein des organismes, institutions, entreprises et regroupements associatifs afin de tracer des itinéraires et des destinations dans une problématique dense et complexe.
Chasse aux trésors

1. Mise à niveau de nos systèmes d’information

La problématique des métadonnées, dans le domaine culturel, prend sa source en amont des processus de gestion de l’information, soit lors de la saisie des données dans un un système ou un logiciel qui n’a pas été conçu pour générer des métadonnées interopérables. Il est également plus facile  de convaincre des gestionnaires d’investir dans  un nouveau site web que dans un modèle de métadonnées  normalisées et interopérables pour lequel il est difficile de fixer des indicateurs de rendement.

Qualité des données

Plus de 60% du temps de travail des experts  des données est consacré au nettoyage  et à l’organisation des données. Il est possible de produire des données qui soient exploitables, plus facilement et à moindre coût, en  mettant en application des principes de qualité inspirés, par exemple, de ceux qui guident la production de données ouvertes et liées pour l’Union européenne.

De la base de données au web de données

Au web des documents, s’est ajouté celui des données. Nous nous éveillons lentement à des modes de représentation et d’exploitation de l’information qui ne font plus référence à des pages, mais à des connaissances et à des ressources.

Dans le web, un contenu c’est de la donnée. Si les pages web s’adressant à des humains demeurent toujours utiles, ce sont les données décrivant des ressources (modèle Schema ou triplets du web sémantique) qui permettent à certaines technologies de classer et de relier l’information obtenue afin de nous fournir des réponses et, surtout, des suggestions.

Indexation de contenu et normalisation de données

Bien que des termes comme « métadonnées » et, même « web sémantique », se retrouvent désormais au programme de nombreux événements professionnels, au Québec et au Canada, trop rares sont les initiatives et projets où il est fait appel à  des équipes pluridisciplinaires comme cela se fait au sein de gouvernements, d’institutions ou d’initiatives collectives, en Europe et aux États-Unis.

Est-il possible de réaliser des projets d’une complexité et d’une envergure que l’on peine à mesurer en dehors du cadre habituel d’un projet de développement technologique ?  On peut en douter. Nous manquons de compétences en ce qui concerne la représentation de l’information sous  forme de données liées, ainsi que sur les principes et méthodes de la documentation de ressources.  Comment pourrions-nous, alors, atteindre des objectifs qui permettraient de tirer tous les avantages possibles des données qui décrivent nos contenus culturels ?

Plus concrètement, comment pourrions-nous entreprendre les démarches nécessaires à la réalisation  d’objectifs similaires à ceux du projet DOREMUS  qui  réunit Radio France, Philharmonie de Paris et Bibliothèque nationale de France ?

«Permettre aux institutions culturelles, aux éditeurs
et distributeurs, aux communautés de passionnés
de disposer :

  • de modèles de connaissance communs (ontologies)
  • de référentiels partagés et multilingues
  • de méthodes pour publier, partager, connecter, contextualiser, enrichir les catalogues d’œuvres et d’événements musicaux dans le web de données

Construire et valider les outils pédagogiques qui permettront le déploiement des standards, référentiels et technologies dans les institutions culturelles

Construire un outil d’assistance à la sélection d’œuvres
musicales.»

Il serait temps de moderniser les programmes  de formation  universitaire en bibliothéconomie et sciences de l’information et en technologies de l’information et d’encourager des intersections. Sans quoi, nous ne disposerons pas suffisamment de ressources compétentes pour passer du web des documents au web des données.

2. Décentralisation de la production de métadonnées

Les initiatives qui présentent le plus grand potentiel pour le développement de compétences  en matière de  production et réutilisation de données sont celles où les organismes sont appelés à participer activement à l’élaboration de leurs modèles de données, aux décisions en ce qui a trait à l’utilisation des données et à la conception de produits ou services. C’est par la pratique que les gestionnaires et entrepreneurs sont sensibilisés à l’utilité et à la valeur des données qu’ils produisent et qu’ils collectent.

Comme le signale Fred Cavazza, dans un récent billet, il nous faut réduire la dette numérique avant d’entreprendre une véritable  transformation:

«Nommer un CDO, créer un incubateur, organiser un hackathon ou nouer un partenariat avec Google ou IBM ne vous aidera pas à vous transformer, au contraire, cela ne fera que reporter l’échéance. Il est donc essentiel de réduire la distance au numérique pour chaque collaborateur, et pas seulement les plus jeunes ou ceux qui sont directement impliqués dans un projet.»

À ce titre, externaliser l’indexation des ressources culturelles (production de métadonnées) ne saurait être considéré comme un choix stratégique dans une économie numérique puisqu’il éloigne les acteurs du traitement des données et les confine à des rôles de clients ou d’utilisateurs, sans opportunités d’apprentissage pratique. En effet, se pencher  sur l’amélioration  et la valorisation de données descriptives et de données d’usage est le meilleur moyen de développer une culture de la donnée et d’acquérir les connaissances qui permettent de transformer des pratiques et de se réinventer. En plus de responsabiliser les organismes et entreprises et d’assurer la découvrabilité numérique de leurs ressources,  la décentralisation de la production de métadonnées renforce la résilience de l’écosystème; chacun des acteurs devenant un foyer potentiel de partage de connaissances et d’expérience.

3. Reconnaissance de la diversité des modèles de représentation

La centralisation de la production de métadonnées favorise généralement l’adoption d’un  seul modèle de représentation des ressources, au détriment de la diversité des missions, des cultures,  et des pratiques. Dans le domaine du patrimoine culturel, par exemple, il existe près d’une centaine de modèles de description différents. Tous ne conviennent pas à la production de données ouvertes et liées, mais il demeure que cette diversité des modèles est essentielle car elle répond à des besoins et contextes d’utilisation spécifiques.

C’est dans le même esprit, qui a permis au web de devenir ce qu’il est (voir « small pieces loosely joined » de David Weinberger, un des penseurs du web), qu’il faut s’entendre sur des principes  et des éléments permettant de faire des relations entre différents modèles de métadonnées.  Cette démarche comporte des enjeux de nature conceptuelle, technologique, voire même économiques et de politiques publiques. Face à un tel niveau de complexité,  nous ne devrions pas tarder à rassembler, autour de ces enjeux, des spécialistes  du développement d’ontologies et des questions d’interopérabilité des métadonnées.

*

Ce ne sont pas de nouveaux portails, plateformes et applications qui nous permettront de ne pas dépendre totalement d’entreprises se plaçant au-dessus des États eux-mêmes. Une « solution technologique » aussi extraordinaire soit-t-elle, ne remplace pas une vision et des stratégies. Surtout lorsque les modèles économiques, dont nous tentons d’imiter les interfaces sans en maîtriser le fonctionnement, reposent sur l’exploitation de données par des algorithmes et des technologies d’intelligence artificielle.

Que faire pour multiplier l’impact des initiatives numériques ?

Comment multiplier la portée des programmes de soutien à la transformation des organisations dans un contexte numérique ? En favorisant des initiatives qui ont pour objectifs des résultats  durables et transmissibles à d’autres individus, organismes ou secteurs d’activités.

Ceux qui tirent la plus grande partie des bénéfices d’une économie numérique sont ceux qui en maîtrisent les concepts clés (collecte de données, organisation et classification de l’information, traitement algorithmique) et qui prennent les moyens pour profiter du réseau (contenu généré par les utilisateurs, mobilisation de capital intellectuel).  Nous ne pouvons cependant pas tenter d’imiter des modèles qui ont nécessité des investissements colossaux et qui, après des années d’expérimentation, constituent des entités aussi riches et puissantes que des états. Mais nous ne devons pas non plus demeurer des fournisseurs de données et de contenus.

C’est pourquoi des programmes d’aide à la transformation numérique et à l’innovation, quel que soit le secteur d’activité, devraient permettre d’accroître de manière plus efficace nos connaissances en matière d’information numérisée , et de favoriser la collaboration entre organismes pour concevoir et expérimenter d’autres modèles de création de valeur.

Voici 3 notions qui sont essentielles pour sortir des vieux modèles :

1 – L’information avant les moyens technologiques

Découvrabilité, métadonnées, mise en commun de données, diffusion de contenu: bien avant d’être du développement logiciel ou la mise en place d’infrastructures, c’est un travail sur la définition et l’application de principes de traitement et d’organisation de l’information.

Découvrabilité dans le web des données

La mise en nombres binaires de l’information (soit des suites de 1 et de 0 qui représentent des caractères, puis des mots) est ce qui rend son traitement et sa transmission possibles par des machines. Par contre, pour que cette information numérisée puisse être repérable, « comprise » et exploitable par des machines qui sont, à présent, en quête de sens, il faut :

  • Décrire les données pour qu’elles soient lisibles et utilisables pour des machines.
  • Publier les données dans le web selon les standards du W3C pour les données ouvertes et liées (Linked Open Data).

De plus, pour rendre cette information découvrable dans le web, il faut préalablement réaliser une étape essentielle:

  • Libérer les données qui décrivent des ressources (contenus culturels, patrimoine vivant et immatériel, produits, services, etc.).

2 – Les données comme actif plutôt que matière première

Nous souhaitons que les moteurs de recherche et autres types de technologie utilisés pour ratisser le web repèrent les données qui décrivent nos contenus, produits et services.  Or, nous persistons à considérer la donnée comme une ressource alors que dans une économie numérique, il s’agit d’un actif. Cette nuance est extrêmement importante puisque cette ressource n’a de valeur que si elle est rare. Nous pourrions, par exemple, avoir à payer pour obtenir les données qui décrivent les titres d’un répertoire musical. Cependant, les données ne seraient donc pas repérables et accessibles pour les humains et les machines.

Considérer les données comme un actif permet de capitaliser sur la valeur de l’information qu’elles permettent de générer et sur le potentiel de découvrabilité qu’elles accordent aux contenus qu’elles décrivent.

3 – Travailler ensemble autour des données

Collaborer au sein d’une même organisation, à travers les disciplines ou entre organismes favorise l’émergence d’idées novatrices et permet de surmonter des problématiques complexes. Travailler sur des données en diversifiant les perspectives permet de générer de l’information utile pour divers objectifs, domaines d’activité et types d’utilisateurs. C’est pourquoi des initiatives qui sont mises en oeuvre par des équipes pluridisciplinaires ont de meilleures chances de succès.

Travailler ensemble sur la valorisation ou la mise en commun de données, que ce soit au sein d’un même organisme ou en partenariat avec d’autres organisations, requiert l’adoption de véritables méthodes collaboratives, notamment, pour que des enjeux relatifs à la gestion des données  et au processus décisionnel ne viennent faire obstacle à l’atteinte des objectifs.  En s’éloignant  des dynamiques de contrôle et de subordination habituelles, il est possible d’instaurer un climat de confiance et la cohésion nécessaires à un travail collaboratif.

Un vrai modèle collaboratif n’est pas centralisateur: chacun des contributeurs d’un système de traitement ou de mutualisation de données est responsable de leur production et de leur qualité.. Ceci a pour effet d’assurer une gouvernance équilibrée du système  et le transfert et développement de compétences au sein de chacune des organisations.

Pour cela, il faut apprendre à élaborer des démarches de projets qui fédèrent les participants autour d’un objectif commun tout en reconnaissant les bénéfices individuels et les limites de chacun. Ainsi, les initiatives et projets peuvent profiter du partage de connaissances au sein de réseaux internes et externes.

Pas d’évolution numérique sans maturité informationnelle

Voici la démarche des 5 étoiles du web des données, tel que conçue  par Tim Berners-Lee et soutenu par les recommandations du W3C.

∗ Rendez vos données disponibles sur le Web (quel que soit leur format) en utilisant une licence ouverte.
** Rendez-les disponibles sous forme de données structurées (p. ex., en format Excel plutôt que sous forme d’image numérisée d’un tableau).
*** Utilisez des formats non exclusifs (p. ex., CSV plutôt que Excel).
**** Utilisez des URI pour identifier vos données afin que les autres utilisateurs puissent pointer vers elles.
***** Reliez vos données à d’autres données pour fournir un contexte. (Cote de degré d’ouverture des données, Gouvernement ouvert, Canada).

Les 5 étoiles des données ouvertes et liées

 

Voici l’échelle de la maturité informationnelle des organisations, telle qu’illustrée par Diane Mercier dans le cadre de sa thèse doctorale sur le web sémantique et la maturité informationnelle des organisations.

Thèse doctorale et références : Web sémantique et maturité organisationnelle sur Zotero. 

Schéma de la maturité informationnelle des organisations

Ces deux modèles participent de la même démarche graduelle et progressive vers l’ouverture et la participation, grâce à l’adoption de principes communs. C’est cette transformation que  des initiatives numériques devraient permettre d’amorcer pour le bénéfice d’organismes et entreprises et, plus largement, pour la résilience d’un secteur d’activité ou d’un écosystème.

Découvrabilité : quand les écrans ne sont plus nécessaires 

Présentation donnée lors de la clinique d’information du Fonds Bell, le 17 octobre 2017, à la Cinémathèque (Montréal).

Mise à jour (16 février 2018):  Cette présentation accompagnait le lancement du guide Êtes-vous repérables ? Guide pratique pour documenter vos contenus , réalisé pour le Fonds indépendant de production, avec la collaboration de TV5.ca et l’appui de la SODEC .

La découvrabilité qui devrait intéresser plus particulièrement tout créateur et producteur de contenus résulte de la présence, dans le web, de données descriptives qui sont intelligibles et manipulables par des machines. Il ne s’agit pas de campagnes de promotion, ni de référencement de pages web, mais de la documentation de  contenus (textes, images, vidéo, enregistrements sonores et toutes autres types de ressources).  Ces trois types d’activité visent des objectifs spécifiques et complémentaires.

Les changements qui affectent la visibilité et la découvrabilité

La plus grande proportion du trafic sur le web est portée par les petits écrans mobiles.
Graphique: le trafic web est porté par les écrans mobiles

Liens utiles:
Smartphones are driving all growth in web traffic
Search engine market share – Mobile – Canada
Cahier de Tendances N°11 : au delà du mobile, France Télévisions

Les moteurs de recherche s’adaptent aux petits écrans.
Lorsque l’information qui décrit un contenu est disponible dans un format que les moteurs peuvent traiter, la liste des résultats de recherche passe au second plan.

Face à la surabondance d’information et de contenus, la pertinence de la recommandation devient un facteur important de fidélisation.

Google - Résultat de recherche sur téléphone

Recherche vocale et assistants virtuels: l’information sans écran.
Plus de 30 millions d’assistants vocaux dans les foyers, aux États-Unis, d’ici la fin de l’année

Assistants virtuels ou assistants vocaux

Liens utiles:
More than 30 million ‘voice-first’ devices in US homes by year end [Report]
Report: 57% of smart speaker owners have bought something with their voice
Gartner Predicts 30% Of Searches Without A Screen In 4 Years

Ces nouvelles interfaces du web n’ont pas d’écran et ne peuvent dont nous répondre en nous fournissant une liste de résultats.
« Enfin et c’est cela qui pose à mon sens le plus gros problème dès que l’on sort de la seule sphère « commerciale », il y a … « le choix d’Alexa », c’est à dire l’idée que bien sûr Amazon / Alexa ne va pas nous « lire » une série de réponses suite à notre requête mais nous en proposer une seule, mettant naturellement en évidence des produits vendus par la marque hôte.» (La voix et l’ordre, billet d’Olivier Ertzscheid).

Moteurs de réponses et de suggestions
Lorsque les données qui décrivent un contenu sont accessibles, intelligibles et manipulables par des applications, elles peuvent être triées par des algorithmes et liées à d’autres données qui décrivent un même auteur, lieu, création, objet, producteur, etc.  Un contenu peut se trouver sur la parcours d’un internaute des décennies après sa création.

Liens utiles:
Les sites web sont-ils en voie de disparition ?
#DIVERTISSEMENT Les algorithmes vont-ils mettre fin à la tyrannie du choix ?
How Netflix will someday know exactly what you want to watch as soon as you turn your TV on

Les moteurs de recherche comprennent-ils nos contenus?

Les pages web sont faites pour être lues par des humains. Les machines ne comprennent pas le contenu de la page, mais elles peuvent manipuler des données qui s’y trouvent  lorsque celles-ci sont mises en contexte grâce à des métadonnées et sont dans un format qu’elles reconnaissent.

Pour savoir si un moteur de recherche peut faire des liens entre votre websérie et d’autres informations disponibles dans le web, il suffit de chercher celle-ci afin de voir si une fiche d’information est produite.

Validation des données structurées: recherche de la série Carmilla.

Chez Google, la fiche d’information, appelée Knowledge card, est générée grâce à  la mise en contexte des données qui décrivent le contenu avec son modèle de classification des connaissances (Knowledge graph). Ces mêmes données descriptives sont mises en relation avec celles d’autres plateformes comme Wikidata (les données structurées de Wikipédia) et, selon le contexte, avec les données de plateformes spécialisées.

Dans le domaine du cinéma, de la vidéo et de la télévision, nous pouvons retrouver les données issues des agrégateurs IMDb (Internet Movie Database,  propriété d’Amazon), AlloCiné et Rotten Tomatoes. Notez que le contenu de ces plateformes n’est pas produit par une seule organisation, mais par des utilisateurs et/ou des producteurs de contenus.

Ce sont des données structurées qui, chez les moteurs de recherche comme Google et Bing , permettent de faire des liens sémantiques qui fournissent une description succincte ou détaillée  d’un contenu dans une fiche d’information. C’est cette fiche qui tend à occuper un espace de plus en plus important sur nos écrans.

De la même manière qu’il a fourni aux développeurs des instructions pour faciliter le référencement de sites web, Google fournit désormais des instructions et des outils pour encourager la production de données structurées. L’outil de test des données structurées détecte la présence de ces données dans une page web et, le cas échéant,  signale les erreurs à corriger et les améliorations possibles.

Google: validation des données structurées: page d'accueil de Louis-Jean Cormier.

Il est également possible de produire des métadonnées pour décrire un contenu qui est présent dans une page web sans connaître le modèle de métadonnées Schema et sans programmation. L’outil d’aide au balisage des données structurées qui est proposé par Google permet de copier les données qui sont encodées en JSON-LD, un format pour les données liées, et de les coller dans le code HTML de la page web où se trouve le contenu.

Google: outil de balisage de données structurées, page web de Vincent Vallières

Cet outil présente un intérêt supplémentaire: il indique les informations qui devraient apparaître dans la page de présentation d’un contenu. De trop nombreuses pages web où sont présentés des films, spectacles, livres, pièces musicales ou œuvres d’art ne contiennent pas le minimum d’information qui permettrait aux moteurs de recherche de les lier à d’autres informations dans le web.

Plus l’information qui décrit le contenu est détaillée et riche, plus grand est le potentiel de celui-ci d’être lié à d’autres contenus et donc, d’être découvert.

Documenter nos contenus, n’est-ce pas travailler pour Google et cie?

Documenter (ou indexer) un contenu, tout comme faire du référencement de pages web, c’est normaliser et organiser la  représentation de celui-ci.  C’est, effectivement, contribuer à l’amélioration continue des applications et des algorithmes des moteurs de recherche.

Mais c’est également une étape nécessaire pour apprendre à nous servir de nos données et, par la suite, développer nos propres outils de découverte, de recommandation et de reconnaissance de ceux qui ont contribué à la création et à la production  d’œuvres.

La culture à l’ère numérique: dans le web des données plutôt que sur une plateforme

Tenter de concurrencer les géants des contenus numériques en proposant nos propres plateformes, comme le proposait Alexandre Taillefer, est une mauvaise bonne idée; surtout dans le domaine culturel. Voici pourquoi:

NON: centraliser l’information dans une base de données

C’est une mauvaise idée, parce qu’il s’agit d’un concept qui va à contre-courant de l’Internet de Tim Berners-Lee: connaissances partagées, production de contenus décentralisée, modèles distributif et collaboratif, données ouvertes et liées, perspectives à la fois locale et globale. Développer une plateforme afin de centraliser dans une base de données l’information concernant des contenus culturels c’est soustraire ces derniers aux connexions potentielles avec d’autres données à travers le monde.

Louis-Jean Cormier dans DBpedia, version sémantique de Wikipédia
Louis-Jean Cormier dans DBpedia, la facette web sémantique de Wikipédia.

Le contenu des bases de données est « sous le web« ,  c’est à dire inaccessible et incompréhensible pour les moteurs de recherche et applications qui ratissent le web en quête de données qui font du sens. La transition d’un web des documents vers le web des données, et, par conséquent, de la préférence visible des moteurs de recherche pour le sémantique (Google et les données structurées), ne font plus de doute. S’exposer dans le web des données ouvertes et liées constitue une bien meilleure stratégie, pour la valorisation des contenus,  le développement de modèles économiques et l’acquisition d’une culture de la donnée, que la reprise d’un concept datant du premier âge du web.

Alors, pourquoi continuer à financer des silos d’information qui interdisent toute possibilité de liens entre nos contenus et l’intention ou le parcours de consommateurs , où qu’ils se trouvent ?

OUI:  mutualiser les ressources pour publier et agréger des données 

La bonne idée est celle de la mutualisation d’équipement et de ressources pour réaliser un projet collectif. Là se trouve le véritable défi de la « révolution numérique »: apprendre à se faire confiance et à collaborer pour développer une valeur collective. Apprentissage d’autant plus difficile que l’offre culturelle est abondante et que notre attention, elle, est limitée.

Publier des données dans le web, comme on le fait pour des pages de sites internet, permet d’éviter les problèmes d’interopérabilité des bases de données tout en préservant l’autonomie des producteurs de données. Il devient, par la suite, possible de collecter et d’agréger ces données afin de les exploiter pour les rendre réutilisables pour des organismes touristiques, pour créer des interfaces d’exploration et, même, pour concevoir des agents intelligents qui feront des suggestions de contenus personnalisées. Mieux que tout autre documentation, cette vidéo produite par la Fondation europeana, explique en 3 minutes ce qu’est le web des données ouvertes et liées et pourquoi il est devenu si important pour la diffusion de la culture.

Le développement de cette infrastructure commune peut être pris en charge par l’État, comme c’est le cas pour Europeana, où l’Union européenne et chacun des états contributeurs, soutiennent les infrastructures et ressources qui permettent aux institutions culturelles de publier leurs données collectivement.  L’État peut également faire appel au milieu académique et au secteur de la recherche, à l’image de l’entente récemment conclue, en France, entre le Ministère de la Culture et de la Communication et l’Inria, afin de soutenir le projet SemanticPedia.

Bien que le web sémantique soit utilisé dans des domaines aussi divers que les services hydroélectriques (Hydro-Québec) et la radiodiffusion (BBCMusic), nous persistons à nous tourner vers des technologies conventionnelles pour diffuser nos contenus culturels. Passer de l’informatique au numérique est clairement un changement difficile à opérer, même dans  une industrie de pointe.

Pour aller plus loin

Pour les technophiles: Le web sémantique en 10 minutes, vidéo produite lors de l’édition 2016 du colloque sur le web sémantique au Québec, dans le cadre du 84e congrès de l’ACFAS.

Libérer le potentiel de nos données culturelles ou laisser d’autres en tirer profit

Silos riachuelo

Tu peux produire de l’excellent contenu, mais s’il ne fait pas partie du web, il ne fait pas partie du discours universel.

Tim Berners-Lee, en entrevue avec Jean-François Coderre pour La Presse.

C’est une affirmation que de nombreux états, institutions et entreprises tiennent désormais pour une réalité. Une réalité que plusieurs expérimentent depuis quelques années déjà et qui s’impose encore davantage à ceux qui observent les transformations qui sont à l’œuvre  dans le web , notamment du côté des moteurs de recherche.

Alors, ne devrions-nous pas élaborer une approche stratégique afin de regrouper et de structurer notre offre culturelle plutôt que d’encourager la production de silos d’informations qui sont difficilement exploitables ?

Comment tirer notre épingle du jeu numérique ?

Il faut nous attaquer à la dispersion de l’offre culturelle, d’une part, et d’autre part, à l’absence de vision transverse sur les données. Autrement, incapables de développer nos propres modèles d’exploitation numériques, nous risquons d’être confinés aux rôles de fournisseurs et de clients de plateformes beaucoup plus attractives et efficaces que nos sites web.

Principal défi: sauf dans des domaines, comme les bibliothèques et  les archives, les organisations ont, en général, peu d’intérêt ou de ressources à investir pour la production de métadonnées standards. Cela pourrait cependant changer.

Données structurées pour moteurs de recherche en quête de sens

Les moteurs de recherche privilégient de façon croissante les contenus web dont la description leur est fournie par des données structurées (appelées quelquefois,métadonnées embarquées). Schema est le modèle de métadonnées soutenu par les grands acteurs du numérique, tels que Google, Microsoft et Apple afin d’alimenter les algorithmes qui fournissent de l’information plutôt que des listes de résultats. Google offre même aux développeurs des modèles descriptifs pour des types de contenus dont la liste s’allonge progressivement.

L’utilisation de la base de connaissance Knowledge Graph, d’un modèle de métadonnées qui est dérivé de la syntaxe du web sémantique (RDF ou Resource Description Framework) et d’un  format d’encodage de données liées (JSON-LD ou Java Script Object Notation for Linked Data) témoigne de la préférence de Google pour le web des données et les liens permettant de générer du sens.

Avec Schema, qui facilite l’intégration des données dans des pages HTML (il existe également des extensions spécialisées pour WordPress), les robot indexeurs et les algorithmes des moteurs de recherche deviennent donc beaucoup plus performants. Il n’est déjà plus nécessaire de quitter leur interface pour trouver une information ou découvrir, par exemple, de nouveaux groupes musicaux.

La production de données structurées est une technique qui deviendra rapidement aussi essentielle que l’optimisation de pages web. Mais une technique, aussi efficace soit-elle, n’est qu’un moyen et ne peut remplacer une stratégie.

Regrouper et structurer notre offre culturelle

Les données doivent pouvoir être extraites des silos existants et reliées entre elles grâce à des métadonnées communes. Les éléments d’information produits par chacun des acteurs du milieu des arts et de la culture peuvent ainsi être reliés de façon cohérente afin de constituer une offre d’information globale et riche et de nous fournir une meilleure visibilité sur les données relatives à l’accès et à l’utilisation de contenus.

Comment accompagner la transition ?

Comment extraire les données descriptives des bases de données et les normaliser ? Comment définir les métadonnées qui formeraient les éléments descriptifs essentiels pour permettre de relier entre eux des ensembles de données qui  utilisent des référentiels standards mais différents ? Et, surtout, comment convaincre les producteurs de données de l’importance de l’interopérabilité et de la structuration intelligente des données ?

Dans cette perspective et afin de travailler collectivement à définir des pistes d’action, nos politiques et programmes devraient jeter les bases d’un projet de mise en commun des données culturelles en soutenant:

  • L’adoption des meilleures pratiques en matière d’indexation de contenu avec des métadonnées et une syntaxe de description qui s’adressent aux machines;
  • L’élaboration d’un un ensemble de métadonnées de base (modèle de médiation) qui permette de « faire la traduction » entre les différents standards et vocabulaires employés selon les domaines (musique, cinéma, arts visuels) et les missions (bibliothèque, archives, commerce, gestion de droits);
  • La libération des données qui décrivent nos créations artistiques, nos produits culturels, nos talents et notre patrimoine. Les données ouvertes constituent une première étape vers la diffusion de données ouvertes et liées.
  • L’acquisition des compétences techniques et technologiques qui sont requises afin de concevoir et de maintenir des outils pour faciliter la saisie et la réutilisation des données par les acteurs concernés.
  • L’harmonisation des différents modèles d’indexation documentaire (référentiels transversaux pour la production des données culturelles, cartes d’identité des biens culturels) au sein du Ministère de la Culture et des Communications.
  • Une étroite collaboration entre les institutions et les organismes producteurs de données autour de la rédaction d’une politique des métadonnées culturelles.

On ne devient numérique qu’en le faisant. Mais c’est un chantier qui repose davantage sur la collaboration et la mise en commun de l’information que sur la technologie.

Musées: des données ouvertes aux données ouvertes et liées

Données ouvertes et liées: connexions possibles entre les données de différentes institutions.
Si nos collections étaient dans le web des données, elles pourraient se lier aux données mondiales de la culture grâce aux métadonnées descriptives.

Comment les musées peuvent-ils rester pertinents dans l’espace numérique ? Alors que la recherche et la découverte de nouvelles connaissances passent par l’intermédiation des moissonneurs de données, robots indexeurs et algorithmes de filtrage, la richesse des institutions de mémoire collective n’est ni accessible, ni compréhensible à ceux-ci.

En sortant de leurs voûtes technologiques les données qui décrivent les objets composant leurs collection, les musées peuvent multiplier les opportunités afin qu’elles se trouvent sur le parcours des machines et des internautes.

Libérer des données pour développer de nouvelles compétences numériques

Cependant, pour publier des données dans le web, il faut convertir celles-ci afin de leur donner des métadonnées et une syntaxe qui soient compréhensibles pour des machines. Même limité à une petite collection d’objets, ce chantier s’avère exigeant pour une équipe ne disposant pas des connaissances des modèles et standards de métadonnées, ainsi que des technologies du web sémantique. C’est pourquoi libérer un ensemble de données constitue un projet idéal pour se familiariser avec les concepts et les enjeux spécifiques à l’exploitation de données dans le web.

Un exemple ? Nathalie Thibault (Musée national des beaux-arts du Québec) et Isa Mailloux (Musées de la civilisation) partagent leurs expériences acquises avec des projets de données ouvertes.

De données ouvertes à données ouvertes et liées: quoi, pourquoi, comment

La vidéo précédente est tirée du dossier Données ouvertes au musée préparé par la Société des musées du Québec (SMQ).  C’est sur le thème des données ouvertes que cette dernière avait organisé les conférences et discussions de la journée professionnelle du 22 juin dernier. Dans la perspective du web des données, de l’apprentissage machine et du traitement algorithmique de l’information, les données ouvertes et liées apparaissent comme la suite logique des données ouvertes. Conçu en collaboration avec l’équipe de la SMQ, le document (PDF 11,2 Mo) qui accompagne les vidéos des présentations a pour objectif de présenter de façon accessible le quoi, le pourquoi et le comment des données ouvertes et des données ouvertes et liées dans le contexte spécifique aux collections muséales.

De la découvrabilité à l’intelligence artificielle

Publier des données dans le web permet d’opérer des changements radicaux, mais nécessaires dans un contexte de transformation numérique:

Exposer l’information et aller à la rencontre des publics

Il faut sortir l’information des voûtes technologiques, car celle-ci a plus de valeur pour l’utilisateur, lorsqu’elle peut être mise en relation, enrichie et contextualisée, que lorsqu’elle est isolée. Dans une économie de l’attention mondialisée, offrir une information tissée en réseau, navigable et exploitable dans le web est plus stratégique qu’attendre la visite d’internautes, chacun sur son site web.

Collaborer et mutualiser les ressources et compétences

Puisque les réseaux se construisent sur la confiance, il faut considérer les autres institutions et acteurs du domaine culturel comme des alliés et, possiblement, des partenaires potentiels afin de travailler collectivement à rendre nos sources d’information interopérables. Ensemble, nous pouvons réaliser beaucoup plus et beaucoup mieux.

Faire des liens et générer plus d’information

Grâce aux métadonnées qui en précisent le sens (par exemple, les métadonnées creator ou subject permettent de distinguer une personne dans son rôle de créateur d’une œuvre ou de sujet d’une œuvre), il est possible de relier entre elles des données provenant de sources différentes. Et ceci, même si les modèles de métadonnées employés ne sont pas les mêmes, pour autant que ces derniers soient issus de référentiels standards et ouverts. La recherche d’information n’est donc plus limitée à un ensemble d’éléments fini et prévisible tel que le contenu d’une base de données. Par le jeu des relations ou par inférences, elle peut déboucher sur une nouvelle information qui n’était pas présente dans l’ensemble initial.

Penser agrégation de données plutôt que sites web

Parce que les données constituent le capital de l’économie numérique, libérer des données permet d’acquérir des connaissances et pratiques essentielles pour le développement de produits et services innovants. Il ne faudrait cependant pas se satisfaire de la production d’ensembles de données constituant, même au sein du domaine muséal, des silos d’information non exploitables dans le web et non-interopérables. Les données ouvertes sont donc une étape vers les données ouvertes et liées et la possibilité de réaliser l’agrégation des données culturelles québécoises.

Le web sémantique permet d’élaborer des requêtes et de programmer des algorithmes qui réalisent des opérations de raisonnement en mettant en relation des informations faisant du sens. Les données ouvertes et liées nous amènent à l’intelligence artificielle grâce à laquelle nous pouvons étendre le champ de nos connaissances et avoir, sur nos collections, une perspective intégrée que ne peuvent nous donner des bases de données isolées les unes des autres.

Web des données: les connexions qui transforment

Web des données depuis 4 ans (2010).

Comme il est possible de le constater en effectuant une recherche avec Google, le web se transforme progressivement et, avec lui, les systèmes d’information.

Nous passons de bases données qui sont conçues pour retrouver une information à des données ouvertes et liées qui, publiées dans le web, permettent à des machines d’établir des connexions et de générer, par inférence, une information qui ne se trouve pas dans notre base de données.

Sélection de lectures parmi mes signets les plus récents sur Diigo:

Connexion

Le web a été conçu pour être exploré par des humains et par des machines. Pour les modèles d’affaires numériques, la découverte de ce que nous ignorions a beaucoup plus de valeur que la recherche de choses que nous connaissons.  C’est, notamment, pour cette raison que les géants du numériques investissent dans les technologies du web sémantique (ou web des données) car elles permettent de représenter les connexions possibles entre différents éléments d’information.

“The value that I see going forward is the linking part of the data environment,” Wiggins added. “You start searching at one point, but you may be linked to things you didn’t know existed because of how another institution has listed it. This new system will show the relationship there. That’s going to be the piece that makes this transformative. It is the linking that is going to be the transformative.”

Searching for Lost Knowledge in the Age of Intelligent Machines – As search engines are radically reinvented, computers and people are becoming partners in exploration.

Curation de données

Nouvelle compétence clé: la curation de données, à la quelle on ajoutera le nécessaire esprit critique qui ne peut être remplacé par les algorithmes.

Avec tous les algorithmes statistiques et tous les outils d’analyse automatique de données (« big data analytics ») du monde, nous aurons encore besoin d’hypothèses causales, de théories et de systèmes de catégorisation pour soutenir ces théories. Les corrélations statistiques peuvent suggérer des hypothèses causales mais elles ne les remplacent pas. Car nous voulons non seulement prédire le comportement de phénomènes complexes, mais aussi les comprendre et agir sur la base de cette compréhension. Or l’action efficace suppose une saisie des causes réelles et non seulement la perception de corrélations. Sans les intuitions et les théories dérivées de notre connaissance personnelle d’un domaine, les outils d’analyse automatique de données ne seront pas utilisés à bon escient. Poser de bonnes questions aux données n’est pas une entreprise triviale !

La litéracie en curation de données

Médiation

Comment éveiller des décideurs aux changements radicaux qui sont annoncés partout, mais qui ne s’expérimentent pas dans le quotidien puisqu’il se transforme de façon beaucoup plus lente et progressive ?

In addition to the artworks and product demos, there are video infographics explaining what companies can and are doing with your data right now, whether it’s credit score calculation, email metadata analysis, or how your wifi-enabled smartphone is basically always snitching on you.

Once you’re thoroughly alarmed by the reality of what we have given up in freedom for the conveniences wrought by our ad-driven world, the team has helpfully created a Data Detox Bar where you can learn about reasserting control over your network existence and limiting your exposure. And the entire exhibit is staffed with all white-wearing “Ingeniouses” who will answer questions or just provide a shoulder to scream into after discovering that there is no such thing as “anonymized data.”

For the truly curious, of which I am one, there are workshops and presentations that provide an even deeper look into the gaping maw of our networked world.

Go to The Glass Room. If Black Mirror Had a Showroom, This Would Be It