Quelle est la probabilité que des données ouvertes et liées fassent découvrir une chose qu’on ne connait ou ne cherche pas? Le potentiel de découvrabilité d’une offre culturelle sous forme de données avec les technologies du Web sémantique est très faible. Pourtant, l’Appel de projets pour le développement culturel numérique dans la francophonie canadienne privilégie la « production et la diffusion la plus large possible de métadonnées (idéalement sous forme de données ouvertes et liées) ». Les arguments qui soutiennent cette orientation gagneraient à être partagés et discutés au sein de comités scientifiques et techniques.
Wikidata améliore-t-il la découvrabilité sur Google? Non.
Contrairement à une hypothèse que j’ai parfois évoquée il y a plusieurs années, puis maintes fois remise en cause, Wikidata n’est pas une solution de découvrabilité sur Google. C’est l’une des bases de connaissances permettant de valider une entité, et non de fournir une réponse. Ce n’est pas un moyen de promouvoir une information pour quiconque interroge Google, et encore moins pour qui ne la cherche pas.
Verser des données dans Wikidata ne rend donc pas un objet culturel plus visible ou découvrable parmi les résultats du moteur de recherche. Cependant, c’est une initiative à fort potentiel de créativité et de transformation numérique si l’on poursuit un tout autre but que la promotion d’une offre, soit la réutilisation de données interopérables et interconnectables, partout sur la planète.
Wikidata pour le Web des données
Par contre, comme je l’ai précisé dans un billet sur le choix d’un environnement technologique, contribuer à Wikidata peut favoriser la découverte de données sur cette plateforme. La maîtrise du langage d’interrogation SPARQL est cependant une courbe d’apprentissage plutôt abrupte pour les non-spécialistes. Même l’assistant de recherche est inaccessible pour qui n’a pas l’habitude de composer des requêtes destinées à des bases de données.
Les organisations versant leurs données dans Wikidata devraient offrir, sur leurs propres sites, des interfaces de recherche avec des requêtes pré-construites. L’exemple présenté ci-dessous est un projet réalisé par le Musée de Saint-Raymond à Toulouse (France) en partenariat avec Wikimedia France.
Cette réutilisation des données dans les deux sens — dans l’environnement ouvert et collaboratif de Wikidata et dans la perspective spécifique d’une institution — présente de précieux avantages:
Impulsion d’une véritable transformation
Un projet de données ouvertes et liées peut contribuer à la transformation d’une organisation dans un contexte numérique. Il ne s’agit pas d’informatisation, mais d’un projet fédérateur qui peut transformer les rapports à l’information et à la communication. Si c’est un choc culturel pour certaines institutions, c’est potentiellement un environnement d’apprentissage et, au final, une véritable transformation numérique pour toute forme d’organisation.
Modernisation d’un système de gestion documentaire
Des données liées offrent un énorme potentiel de découverte et de connaissance car elles ne sont pas figées dans un modèle où les relations sont prédéfinies. Ceci accorde à une base de données en graphe (appelée aussi graphe de données liées) la capacité d’effectuer du raisonnement, ce que la technologie des bases de données classiques n’offre pas.
Contournement des défis du Web sémantique
Wikidata réduit considérablement les coûts, délais et expertises requises pour la réalisation d’un projet de données ouvertes et liées en fournissant, entre autres, la plateforme et l’ontologie. Bien plus complexe qu’un vocabulaire, une ontologie est la spécification d’une conceptualisation, à l’aide de types d’objets, de leurs propriétés et de leurs différents types de relations. C’est un exercice d’abstraction réalisé par un petit nombre de spécialistes
Interopérabilité accrue des données
L’ontologie qui permet de modéliser les données pour Wikidata n’est pas conçue pour représenter le concepts propres à chaque domaine de connaissance. C’est un avantage: alors qu’une base de données classique est conçue pour répondre aux besoins et usages d’un domaine ou discipline, Wikidata ne cloisonne pas la connaissance et favorise, de ce fait, les interconnexions.
Petit rappel
Une base de données classique et un graphe de données liées ne sont pas exploitables pour les moteurs de recherche comme Google.
Deux grands défis d’un projet de données
Un projet de données liées comporte des défis qui doivent impérativement être identifiés et analysés en amont de toute conception ou acquisition de technologie. Voici deux de ces défis:
Expérience de recherche
Des données liées doivent permettre d’offrir des fonctions de recherche différentes de (et supérieures à) celles d’une base de données classique.
Une recherche par auteur, titre et sujet n’apportera pas de nouvelles connaissances. Les critères d’une recherche avancée ne sont pas de bons moyens pour faire découvrir une collection à qui ne cherche rien en particulier.
Mobilisation des utilisateurs(trices)
Changer le comportement de personnes qui accèdent à de l’information en posant simplement une question (Google, ChatGPT) ou de façon passive (flux des réseaux sociaux) est très certainement l’un des plus grands défis des nouvelles base de données en ligne.
Comment faire d’un site une destination préférée pour chercher ou découvrir de l’information? Hélas, nombreux sont les projets qui ne reposent que sur une campagne de promotion pour modifier des habitudes devenues des réflexes.
Wikidata: oui, mais pour des résultats concrets
Le versement de données dans Wikidata ne devrait pas être promu comme une bonne pratique de référencement web et de découvrabilité sur Google.
Cependant, un projet avec Wikidata peut faire converger deux buts: développer une culture de la donnée et amorcer une véritable transformation numérique impliquant de nouveaux modes d’organisation et de collaboration.
Favoriser la découverte d’une offre pour atteindre un objectif c’est bien, mais dans quel environnement technologique? La réponse à cette question, rarement abordée, pourrait pourtant aiguiller certains projets ciblant les moteurs de recherche vers de meilleures pratiques de conception et de rédaction pour le Web plutôt que vers la création de métadonnées.
Recherchée: méthodologie de projet
Parmi les écueils qui constituent des risques pour la réussite d’un projet, j’ai déjà élaboré sur le but et le solutionnisme technologique. Le but (résultat mesurable) est fréquemment confondu avec les moyens (découvrabilité). L’énonciation d’un but fait partie d’un exercice stratégique. Celui-ci est escamoté, de même que l’identification des besoins, lorsque des moyens technologiques semblent apporter une réponse simple à une situation pourtant complexe.
Ces écueils pourraient être évités en adoptant une démarche de réalisation de projet qui débute avec une réflexion stratégique. Ce sujet devrait figurer au premier plan des différents coffres à outils proposés, en culture comme dans tous les domaines.
Voici à présent, un troisième écueil qui peut apporter son lot de problèmes: la méconnaissance d’un univers où se croisent, sans nécessairement se connecter, divers domaines d’expertise.
Ce que nous désignons généralement comme « le numérique » rassemble des environnements technologiques qui ont des langages, structures, normes et, surtout, des objectifs et usages bien spécifiques. Voici les environnements que l’on peut retrouver dans des projets
Web (pages)
Celui des moteurs de recherche: c’est à dire les sites et plateformes développés avec les standards du Web et et dont le contenu est accessible et indexable. Seul le contenu de type HTML est exploité pour répondre aux demandes des utilisateurs. Dans cet objectif, des métadonnées comme des identifiants internationaux (par exemple: ISNI) ou locaux (par exemple: numéros uniques d’œuvres) présentent beaucoup moins d’intérêt, pour les algorithmes, qu’une bonne description à la Wikipédia. Ces métadonnées seront, par contre, très importantes dans des environnements centrés sur les données, comme les trois suivants.
Celui des jardins clos, au contenu non accessible aux moteurs de recherche, car il n’est volontairement pas ouvert et conforme aux standards du Web. On y trouve les plateformes accessibles aux détenteurs de compte (payants ou gratuit), comme les réseaux sociaux et les sites d’écoute musicale.
Web sémantique (données ouvertes et liées)
Il s’agit d’une extension du Web qui utilise des technologies, standards et infrastructures différentes de celles du Web auquel nos navigateurs nous permettent d’accéder. Ce type de contenu qui n’est pas du HTML ne peut être indexé, interprété et utilisé par les moteurs de recherche à titre de résultat.
Contribuer à Wikidata peut intéresser des initiatives de données ouvertes et liées qui ne souhaiteraient pas développer leurs propres infrastructure et modèle de représentation.
Base de données relationnelles
Même si celle-ci peut servir à alimenter des pages web, une base données n’est pas « dans le Web » et donc, inaccessible à des moteurs de recherche comme Google. Par contre, un bon modèle de données et des métadonnées appropriées à la mission et aux utilisateurs cibles participent à la conception d’interfaces de recherche et de découverte.
Données ouvertes
Libérer des données est, en soi, un projet comprenant plusieurs étapes importantes afin de rendre celles-ci disponibles sous forme de fichier(s). Ce type de démarche est réalisé en amont d’un projet de données ouvertes et liées. Si des métadonnées permettent de décrire un jeu de données, les données elles-mêmes ne font pas partie du contenu exploitable par les moteurs de recherche.
Quel est l’environnement concerné?
Il est important de bien cerner le problème, ou d’identifier et prioriser les besoins, avant de développer une stratégie et de se pencher sur les outils technologiques. Ceci réduira considérablement les risques et coûts associés à des choix qui ne pas alignés sur le résultat attendu, notamment en raison de l’incompatibilité de plateformes, langages, applications et usages.
Voici, des types de projets qui correspondent aux environnements technologiques présentés précédemment:
Site web
Promotion et visibilité de l’information par l’entremise de moteurs de recherche commerciaux.
Données ouvertes
Réutilisation de données pour la recherche ou le développement d’applications.
Données ouvertes et liées
Réutilisation de données avec les technologies du Web sémantique: bases de connaissances interconnectées, fonctions avancées d’analyse et de recherche.
Base de données relationnelle
Gestion et utilisation de données, comme celles d’un catalogue d’enregistrements musicaux, par exemple, par des applications.
Il est possible que plus d’un environnement technologique soit concerné par un projet. Dans ce cas, il est impératif de rechercher des expertises, planifier des budgets et gérer des projets qui seront spécifiques à chacun des environnements.
* * *
Il est plus que temps d’améliorer la littératie numérique de tous les acteurs participant à des projets. Et plus précisément, connaître les particularités des différents environnements technologiques. C’est une mise à niveau qui devrait logiquement concerner les bailleurs de fonds, les prestataires de services de conception et les spécialistes des sciences de l’information. Dans ce contexte, on devrait se demander s’il est souhaitable que les acteurs du domaine culturel soient les seuls à faire des apprentissages essentiels à la transformation numérique de tout l’écosystème.
Il est temps d’apporter un peu de clarté dans le méli-mélo de concepts qui ne sont pas très bien maîtrisés. Voici une petite mise au point qui pourrait être bénéfique pour les promoteurs d’initiatives numériques, ainsi que les organisations qui les financent.
Quel est le but?
Il arrive qu’un projet n’ait pas de but précisément déterminé: on ne sait pas quel problème il résoudra ou quels seront les résultats tangibles. Par exemple, « authentifier une œuvre » est un moyen et non, une finalité.
Il importe de définir un but précis et tangible pour mobiliser des membres et des partenaires. Ceci est aussi essentiel pour déterminer l’espace numérique concerné par le projet et, ainsi, identifier les technologies et structures sémantiques appropriées.
Quel type d’espace numérique?
Il arrive également qu’un projet de données numériques rassemble des concepts et technologies qui appartiennent à des espaces numériques différents. Ces espaces sont:
Web des moteurs de recherche
Le Web que nous connaissons est ce qu’on peut appeler le « Web des documents » parce que des pages sont reliées par des réseaux de liens hypertextes. Dans cet espace, le texte contenu dans chaque page est indexé et exploité par des moteurs de recherche.
Wikipédia, tout comme Wikidata, est une des bases de connaissances utilisées par Google pour valider une entité qui a été reconnue sur un site web. Rédiger un article sur Wikipédia est une excellente façon d’enrichir l’encyclopédie avec des éléments historiques et culturels québécois. On peut également s’inspirer de la structure d’un article pour améliorer le contenu d’une page web et ainsi, le rendre utile pour les moteurs de recherche.
Google exploite les balises Schema.org uniquement pour certains types de contenus afin de produire des résultats enrichis, sans toutefois en garantir l’utilisation. Les consignes d’intégration des balises démontrent l’intérêt du moteur de recherche pour le développement d’ententes commerciales (données) avec certains opérateurs et intermédiaires :
Musique: Google ne recommande pas de modèle; des ententes ont été conclues avec les plateformes musicales.
Livre: le moteur précise que son modèle cible uniquement les « distributeurs à gros volume ».
Événement: les balises ne sont pas nécessaires si un site tiers (ex: billetterie, Facebook, Eventbrite) est utilisé.
Attention: les balises sont sans effet si le contenu de la page ne répond pas aux exigences de qualité de Google. Il est donc plus efficace d’améliorer la valeur informative des sites web d’acteurs culturels dans un domaine ou territoire donné que d’insérer des balises.
2. Web des données
Le Web sémantique, appelé aussi « Web des données », est une extension du Web des documents. Des entités ou des ressources sont représentées par des triplets de données (entité – relation – entité). Pour les moteurs de recherche, il n’y a pas de pages à indexer, ni de contenu à exploiter dans cet espace. C’est là que la conception ou, préférablement, l’adaptation d’ontologies de domaine peut être pertinente.
Verser des données dans Wikidata permet d’enrichir une base de connaissances mondiales. Il est alors possible de lier des données de différentes sources sans avoir à investir dans le développement d’infrastructures et de modèles conceptuels pour profiter des avantages du web sémantique.
Mais ceci ne rend pas une offre culturelle plus visible. Les moteurs de recherche indexent le contenu de sites web et peuvent utiliser des ressources comme Wikidata pour valider la reconnaissance d’entités.
3. Plateforme web « privée »
Des plateformes web, qui offrent des contenus et les réseaux sociaux, forment des espaces numériques privés: elles ont leurs langages et règles de représentation et d’utilisation de l’information. Les moteurs de recherche ne peuvent en indexer le contenu, d’autant que plusieurs ne sont accessibles que sur abonnement.
4. Base de données classique
Un autre type d’espace numérique très important est constitué des bases de données. Elles peuvent être interrogées à partir de sites web et également, alimenter le contenu de catalogue en ligne. Mais n’étant pas conçues avec les technologies et standards du Web, celle-ci ne sont pas accessibles aux moteurs de recherche.
5. Et les données ouvertes?
Les données ouvertes ne rendent pas ce qu’elles décrivent plus visible ou repérable pour les moteurs de recherche. Libérer des données permet à ceux qui les utilisent, de créer de la valeur sous forme de services, produits ou nouvelles connaissances. Des données ouvertes sont également nécessaires pour des initiatives de données ouvertes et liées avec les technologies du web sémantique.
Les données ou le contenu?
Les données et le contenu jouent des rôles différent pour la découverte et la repérabilité des offres culturelles selon l’espace numérique visé.
L’amélioration de la repérabilité d’offres culturelles sur le web, pour les moteurs de recherche, repose principalement sur la lisibilité de la structure d’un site web et de son contenu. L’analyse du langage qui permet la reconnaissance d’entités et l’interprétation d’un texte ne se fait pas sur des données, mais du contenu.
Il est donc important de rappeler que les moteurs de recherche indexent du texte. Le contenu leur fournit le contexte et la diversité de termes et de liens nécessaires pour alimenter leurs modèles d’organisation des connaissances. Ceux-ci sont appelés des graphes de connaissances. Google n’utilise pas d’autre modèle que le sien.
Identifiants: dans quels espaces?
Les données sont exploitées par une grande variété de systèmes de gestion de bases de données et, également, sous forme de données liées (ouvertes ou non), dans le web sémantique. C’est dans ces types d’espaces numériques que des identifiants uniques sous forme de données sont les plus utiles. Bien que ces derniers puissent enrichir la biographie d’une artiste ou la fiche technique d’une œuvre, sur un site web, ils ne peuvent être interprétés par les moteurs de recherche.
Découvrabilité: ça commence sur un site web
Votre site web devrait être la source d’information numérique la plus complète et la plus fiable à votre sujet. Pour différencier une offre culturelle, il faut miser sur une description plus riche que de simples informations factuelles. En utilisant des hyperliens pour fournir plus d’information, vous signalez des entités importantes qui aident les moteurs à contextualiser votre offre. En prime: un contenu bien structuré vous permettra de mieux interpréter les statistiques d’usage de votre site.
Les moteurs de recherche améliorent sans cesse leur capacité à interpréter le contenu afin de l’utiliser pour répondre à des questions. Nous devons réinvestir le domaine du langage sur ces espaces numériques privilégiés que sont nos sites web.
En culture comme en commerce, les initiatives de mise en commun de données numériques, constituent de nouveaux « milieux documentaires ». Au Québec, pourtant, les compétences et méthodes du domaine des sciences de l’information sont rarement sollicitées. Les institutions d’enseignement et les associations professionnelles concernées devraient pourtant reconnaître, dans ces projets, les notions et enjeux entourant les systèmes documentaires classiques.
Voici quelques lectures récentes illustrant des défis que pourraient relever les spécialistes intéressés par ces nouveaux milieux documentaires.
Cet article introduit certains défis actuels de l’élaboration d’un modèle de métadonnées qui permette de faire des liens entre les ressources de bases de données différentes.
Tout choix est subjectif; il n’y a donc pas de donnée neutre. Un modèle de classement ou de catégorisation peut être porteur d’exclusion, notamment de ce qui peut apparaître inclassable (personne non genrée, pratiques artistiques hybrides…) car il impose le choix d’un descriptif parmi un nombre limité d’options.
Que faire des œuvres qui n’ont pas été pensées et créées dans le cadre d’une pratique déjà bien étiquetée? Et surtout, comment documenter l’intention?
Ça devient un problème à partir du moment où des livres ne reçoivent pas la reconnaissance qu’ils devraient avoir parce qu’on les juge à partir de critères qui n’ont rien à voir avec leur projet littéraire. Clara Dupuis-Morency, autrice et enseignante en littérature.
Comment, alors, respecter la création, anticiper les biais et éviter que la perspective d’une culture dominante n’occulte celles d’autres cultures?
Un catalogage qui se satisferait de distinguer les textes de fiction des textes entretenant un rapport plus immédiat au réel serait donc inefficace. ibid.
Ce billet publié par l’équipe des produits numériques du New York Times met en lumière le travail d’indexation et de catalogage requis par le développement d’un algorithme de recommandation. Il souligne l’importance d’intégrer la pensée humaine aux processus automatisés de traitement documentaire.
Le nettoyage des données et l’amélioration de la qualité descriptive des métadonnées sont des opérations essentielles à l’exploitation d’une base de données. Elles le sont également dans le cas d’un programme d’apprentissage automatique ayant pour objectif l’entraînement ou le bon fonctionnement d’un algorithme de recommandation.
When we took a deeper look at a few of the incorrect labels, we could often understand why the model assigned the label, but saw that correcting the mistake requires human judgement. It takes knowledge of history and society, as well as the ability to recognize context to intuit that some articles are better suited for some interest categories than others. The NYT Open Team
(…)
Readers trust The Times to curate content that is relevant to them, and we take this trust seriously. This algorithm, like many other AI-based decision-making systems, should not make the final call without human oversight. ibid.
À lire avant de convertir une taxonomie (ou tout autre vocabulaire contrôlé) en ontologie. Il s’agit bien de référentiels ayant des rôles différents et la problématique réside principalement dans les caractéristiques spécifiques de ces différents modes d’organisation des connaissances. Par exemple: l’adaptation de la structure hiérarchique d’une taxonomie à la structure en graphe d’une ontologie de domaine.
The problem is that the definitions and rules for hierarchies vary depending on the kind of knowledge organization system, so you cannot assume that a hierarchy in one system converts to a hierarchy in another system.
(…)
“Hierarchy” can have various types and uses. Not all kinds of hierarchies are reflected in even in taxonomies, which tend to be quite flexible. The rules are stricter when it comes to thesauri. Finally, in ontologies, there is only one kind of hierarchy. Heather Hedden, taxonomiste, ontologiste, autrice et formatrice.
Le concept de « graphe de connaissance » (knowledge graph), a été popularisé par Google, bien que des structures de données en graphes existaient auparavant dans différents domaines. Ce type de structure est souvent perçu comme une solution qui permette d’imposer un modèle descriptif assurant la visibilité et/ou l’interopérabilité de ressources informationnelles.
L’adoption d’un modèle descriptif unique entraîne cependant une uniformisation des perspectives qui conduit à l’aplatissement des connaissances. C’est également la source de problèmes rarement anticipés. Par exemple: l’adoption d’un vocabulaire commun dans toute l’organisation va-t-elle «pérenniser» vos données ou entraîner des réunions sans fin pour débattre de ses mises à jour des vocabulaires et des ontologies sont discutées?
If we instead listen to the problems information workers have, spend a day shadowing them in their jobs, and design solutions that integrate knowledge-tech in a lightweight way to automate tedium, then we have a shot at solving a larger set of problems, to benefit more of society. Mike Tung, CEO Diffbot.
Au-delà du solutionnisme technologique, il faut explorer les bénéfices issus du développement d’une véritable culture de l’information au sein des organisations. Cela signifie que la gestion et la qualité de l’information sont des responsabilités devant être partagées dans une organisation et non plus limitées au service des technologies de l’information.
Découvrabilité hors du Web des moteurs de recherche
OCLC, un organisme sans but lucratif au service des bibliothèques, rend compte d’un projet pilote sur la transformation des métadonnées de collections en données liées. Il nous rappelle que la découvrabilité recherchée n’est pas celle qui se mesure à l’aulne des résultats de Google ou des cotes de popularité des plateformes de contenus.
Les bases de données en graphe – il faut le répéter – ne sont pas indexées par les moteurs de recherche. Il existe d’autres espaces numériques où l’accès à la culture pourrait fournir des expériences de recherche et découverte pertinentes et efficaces. Exemple: naviguer à travers des collections qui proposent des connexions que des bases de données classiques n’arrivent pas à révéler.
Representing what is locally unique yet making local information legible to outsiders and creating a mechanism where differences can be understood, bridged, and linked is an important part of what public libraries using newer descriptive systems can surface.
À l’image des initiatives de la BnF et d’Europeana, le projet d’OCLC a permis à des institutions de se familiariser avec des méthodes et outils du web sémantique :
The Linked Data project demonstrated the amount of work involved in the transition to linked data, but also that the tools exist and that the workflows can be developed.
Pour une vision systémique du numérique
Les initiatives et projets qui visent à structurer l’information pour le numérique constituent de nouveaux milieux documentaires, hors des lieux habituels que sont les bibliothèques, centres de documentation et fonds d’archives. Les professionnels des sciences de l’information sont formés pour relever les défis inhérents aux « espaces» numériques que sont les sites web, les plateformes commerciales, le Web des données et, même, les jeux de données ouvertes. Il serait temps que la rencontre entre tous ces acteurs se réalise. La réussite de nos initiatives en dépend.
L’angle mort de la promotion de l’offre culturelle dans un monde numérique est la faible valeur informative de nos sites web. Quand une œuvre est mieux documentée dans une brochure que sur le site de son auteur, il est clair que les sciences du langage et de l’information n’ont pas été prises en compte dans sa conception.
Or, ce ne sont plus les balises Schema.org insérées dans le code ni les articles de Wikipédia qui facilitent le travail des moteurs de recherche en les rendant intelligents. C’est, à présent, le traitement automatique du langage naturel. Celui-ci permet aux algorithmes d’évaluer l’information présente sur une page web et lisible par les humains.
Plus l’information offerte par le texte est riche et contextualisée par des liens vers d’autres pages web, plus elle a de valeur pour nous et, par conséquent, pour les moteurs de recherche dont l’objectif est de nous offrir les meilleurs résultats possibles.
Un travail de spécialistes
Après quelques années d’accompagnement d’entrepreneurs culturels, je peux affirmer que rares sont les non-initiés sachant manier avec aisance des notions et des mécanismes qui demeurent complexes, même pour des spécialistes du Web. Ce billet sur les définitions divergentes de ce qu’est une ontologie permet de mesurer le défi d’établir une compréhension commune et claire d’une notion pourtant fondamentale des systèmes documentaires. Et pour celles et ceux qui persévèrent, les concepts et pratiques nouvellement acquis sont trop éloignés de leurs activités pour qu’ils soient en mesure de les intégrer aux opérations et de se livrer à la veille technique qui s’impose en permanence.
Structurer de l’information pour une variété d’usages et de systèmes, c’est un travail de spécialistes. Le rôle de créateurs de contenu consiste à documenter cette information et à raconter comment elle s’insère dans notre monde. Ils peuvent se faire aider afin de produire l’information répondant le mieux aux intérêts des publics cibles et de fournir des liens nécessaires aux humains et aux machines pour apporter du contexte, favorisant ainsi la découverte.
Voici les étapes qu’il faudrait suivre afin d’améliorer la valeur informative de la page web consacrée à une offre culturelle:
1- Stratégie: quelle information, à quels publics, pour quels résultats
Mieux un contenu est documenté, plus il est susceptible de pouvoir réponse à une question. Il est donc important de baser la conception du contenu d’une page sur une solide connaissance des publics cibles. D’où la nécessité d’une stratégie et d’une concertation entre les producteurs, diffuseurs et toutes autres parties concernées. Toutefois, l’élaboration d’une stratégie de ce type requiert une formation préalable mobilisant divers spécialistes.
2- Documentation: les choses et les relations entre ces choses
L’adaptation de nos contenus culturels à l’environnement numérique commence par l’écriture. Tous les éditeurs de sites web doivent à présent mieux organiser et documenter leurs contenus pour les rendre plus repérables. Pour Google, « documenter » signifie: bien décrire un contenu et fournir du contexte en faisant des liens entre des concepts. Plus la documentation est exhaustive et clairement libellée, plus elle a de la valeur pour les utilisateurs — et plus la page web de l’offre culturelle devient une source d’information de qualité.
3- Balises: signaler certains types de contenus
Certains types de contenus — comme les vidéos, par exemple — peuvent apparaître sous forme d’extraits, dans la liste de résultats de Google (résultats enrichis). L’utilisation de balises permettant de catégoriser des contenus n’est donc pertinente que pour un petit nombre d’offres. Les modèles descriptifs recommandés sont ceux qui concernent les projets de développement des services du moteur de recherche. De plus, les consignes à suivre évoluent en fonction du résultat des expérimentations et de l’avancement du traitement automatique du langage.
Nous devons, alors, éviter de développer des fonctionnalités qui deviennent rapidement obsolètes ou, pire, qui réduisent notre capacité d’innovation en l’encadrant dans la logique d’affaires d’une plateforme. Il faut donc que nous demeurions extrêmement vigilants afin que nos projets nous apportent une réelle valeur et ne tombent pas dans le solutionnisme technologique.
4- Wikipédia: création d’article utile, mais non essentielle
Wikipédia facilite l’identification d’un concept ou objet spécifique, mais ce sont les pages web qui sont les sources primaires pour Google. Contrairement à la croyance courante, la production d’une fiche de réponse (appelée « knowledge panel ») résulte du traitement du contenu provenant de différentes pages web. Celles-ci sont qualifiées par le moteur de recherche pour l’information qu’elles offrent. En analysant certains brevets déposés par Google, on peut déduire que son utilisation de l’encyclopédie n’est ni constante, ni déterminante. Créer un article Wikipédia n’est donc pas une activité essentielle dans un plan de découvrabilité, même si cela peut accroître la notoriété d’un sujet lorsqu’il contient des connaissances utiles et des liens vers d’autres articles.
L’écriture: une « solution » à la portée de tous!
Adapter nos contenus culturels à l’environnement numérique commence donc par une technique millénaire: l’écriture. Nous pourrions beaucoup mieux documenter nos offres culturelles sur nos sites web sans nécessairement plonger dans des domaines de connaissance complexes. Il suffit d’apprendre à décrire des choses et les relations entre ces choses pour des systèmes qui, eux-même, apprennent à lire afin de fournir la meilleure information à leurs utilisateurs. Bref, avant de se lancer dans la modélisation de données ou le web sémantique, il serait temps de revenir aux stratégies de communication, ainsi qu’aux bonnes pratiques de rédaction web.
Il faut encore le répéter: produire des métadonnées n’est pas une stratégie et se contenter d’intégrer des balises Schema.org dans une page web ne garantit pas nécessairement la découvrabilité d’une offre. À l’inverse, par contre, une bonne stratégie permet de choisir les bons outils et les bonnes métadonnées.
Retour sur des notes prises en lisant des propositions de projets numériques.
À la recherche de la stratégie perdue
L’absence de réflexion stratégique est le talon d’Achille de la plupart des propositions de projets et de plans de découvrabilité. Pourtant, qu’il s’agisse de baliser des types de contenu à l’intention des moteurs de recherche ou de décrire des ressources dans un catalogue en ligne, la production de métadonnées utiles s’appuie sur la connaissance des publics cibles et des résultats recherchés.
La meilleure façon d’évaluer le résultat des efforts déployés pour qu’une offre ou un contenu rejoigne ses publics est de fixer des objectifs mesurables et réalistes. Et pour cela, il faut avoir élaboré une stratégie basée sur la connaissance du marché, des opportunités et des contraintes propres à l’organisation.
Les connexions entre votre offre et ses publics cibles
Les algorithmes des plateformes évoluent vers une personnalisation accrue des réponses qu’elles proposent en s’appuyant sur les profils de leurs utilisateurs. Nos sites web devraient faire de même en fournissant des éléments d’information qui « parlent » aux publics cibles et qui, conséquemment, facilitent le travail des moteurs de recherche.
Petit rappel: nous découvrons de l’information sur l’interface d’un moteur de recherche, mais c’est celui-ci qui la trouve. Et cela, en fonction d’un traitement algorithmique fondé sur :
la popularité (ou l’autorité) des contenus;
leur similarité avec le profil et l’historique de navigation de l’utilisateur.
Avant de tout miser sur des métadonnées
Voici quelques éléments clés sur lesquels réfléchir avant de déterminer les activités à réaliser dans le cadre d’un plan de découvrabilité:
Peu importe les activités évoquées par le terme, la découvrabilité n’est mesurable qu’à l’aide des objectifs déterminés par la stratégie. Pas de stratégie: pas d’objectifs donc pas d’évaluation des résultats. Et cela s’applique autant à une stratégie de promotion qu’à des initiatives de mutualisation de données et de modélisation de connaissances pour le web sémantique.
Les moteurs de recherche ne sont que l’un des vecteurs de la découverte. Celle-ci n’advient pas que par l’entremise de machines car la recommandation est encore largement sociale — réseaux sociaux, réseaux professionnels et académiques, bibliothécaires, libraires, médias et publications spécialisées. Les métadonnées ne sont que l’un des moyens à mettre en œuvre, au même titre qu’une page Facebook ou une chaîne YouTube, au service d’une stratégie.
Se contenter d’intégrer des balises ne permet pas aux moteurs de recherche de fournir aux utilisateurs les réponses correspondant le plus à leurs profils ni de différencier une offre au sein d’une même catégorie, comme des événements, par exemple.
Les deux cotés d’une même page :
Métadonnées dans le code HTML: les modèles Schema.org permettent aux moteurs de recherche de catégoriser des types de contenu.
Données dans le contenu d’une page web: certains éléments d’information repérables, tels que des entités nommées et des mots clés, facilitent la contextualisation et la personnalisation des résultats de recherche.
Il faut se tenir bien informé de l’évolution du moteur de recherche et de ses consignes d’utilisation avant d’indexer des offres avec Schema.org. Les objectifs de Google varient dans le temps, selon les types de contenu et selon les ententes qu’il conclut avec certaines grandes sources de données, comme par exemple, des plateformes musicales.
Un site web qui fournit de l’information structurée pour des machines et qui contribue à un écosystème de liens utiles pour des humains est un excellent investissement stratégique.
Tous les acteurs de l’écosystème numérique d’une offre culturelle contribuent au rayonnement de celle-ci par l’information offerte sur leurs sites web . Ceux-ci participent également au déploiement d’un réseau d’hyperliens fournissant des données contextuelles aux moteurs de recherche et des parcours de découverte aux humains.
Un bon plan de découvrabilité résulte d’une connaissance des publics cibles et de l’utilisation réfléchie et coordonnée de différents outils: référencement, modèles Schema.org, contributions à Wikipédia et Wikidata, publications sur des réseaux sociaux, campagnes de promotion et publicité.
Il n’existe pas de recette gagnante: une stratégie de visibilité et de rayonnement est spécifique à chaque projet. Le succès d’un plan découvrabilité dépend de choix qui sont alignés sur cette stratégie afin de publier la bonne information, dans le bon format, au bon endroit et pour le bon public.
Ce billet s’inscrit dans la ligne du précédent, qui appelait à remplacer le terme fourre-tout de découvrabilité par les objectifs, beaucoup plus concrets, de repérabilité, accessibilité et interopérabilité.
Nos sites web sont des ensembles d’informations structurées pouvant être repérées, consultées, utilisées et interconnectées sur la grande plateforme ouverte qu’est le Web. C’est pour cette raison que les nôtres sont au cœur de la découverte de contenus et d’offres diverses. Nous devrions consacrer prioritairement nos efforts à les moderniser. Parce qu’aujourd’hui, tout part de là.
Objectif: aider les moteurs à repérer et lier des entités
Les moteurs de recherche indexent le contenu des pages web. Grâce au développement de bases de connaissances structurées (Knowledge Graph), ceux-ci peuvent repérer dans chaque page des choses ayant une signification spécifique, comme des personnes, des lieux, des événements ou des œuvres. Ces choses sont appelées « entités nommées ». Les entités nommées qui sont repérées sont catégorisées et associées selon le modèle d’organisation propre à chacune des bases de connaissances des moteurs de recherche.
Nos sites web, lorsqu’ils sont bien conçus, alimentent ces bases de connaissances. C’est pour cette raison qu’il faut prioriser l’amélioration de la repérabilité des contenus sur nos sites avant de verser des données dans Wikidata. Cette base de connaissances, tout comme d’autres, sert à réduire l’ambiguïté entre des entités (homonymes) et à valider les liens entre elles. Elle ne remplace cependant pas les sources d’information interconnectées, classifiées et référencées que sont les sites web.
Stratégie: quoi, pour qui, avec quels objectifs?
L’amélioration des conditions de repérabilité de l’information ne produit pas de résultat immédiat, contrairement aux tactiques de référencement organique de pages. Elle s’inscrit dans la durée et doit s’appuyer sur des notions précises plutôt que sur des mythes.
La réflexion stratégique permet de déterminer les objectifs à atteindre, les questions auxquelles les données doivent répondre, les publics cibles et les caractéristiques des offres à mettre de l’avant. Les objectifs vérifiables et mesurables de la « découvrabilité » sont les indicateurs de succès qui ont été déterminés en amont dans la stratégie numérique.
Responsabilités: qui fait quoi?
Comme je l’ai déjà mentionné dans un autre billet, nous ne devons plus concevoir des sites web comme des documents, mais comme des plateformes de données. Il faut nous affranchir d’un modèle de conception hérité du document imprimé afin de concevoir le site en commençant par les modèles de données plutôt que par les modèles de pages. Viennent ensuite la définition des structures représentant le ou les domaine de connaissance, puis la représentation des types d’entités sous forme de nœuds et de liens pour former, finalement, des graphes. Tout ceci nous oblige à revoir la méthodologie de conception de sites et à faire appel à des compétences qui sont rarement sollicitées pour des projets web.
Il ne s’agit pas uniquement de savoir comment intégrer ce processus dans les activités d’un projet, mais aussi de savoir ce qui doit être fait à l’interne et ce qui doit, par contre, être confié à des spécialistes.
Il n’existe pas de recette toute faite, ni d’application, pour améliorer ainsi l’organisation de l’information. L’élaboration d’un modèle de données représentant différentes entités et les relations qui les définissent est un travail de spécialiste. De plus, la spécificité des offres, objectifs stratégiques, publics cibles et environnements technologiques soulèvent des questions auxquelles une présentation de 3 heures ne permet pas de fournir de réponses solides.
Trois étapes essentielles pour rendre l’information plus repérable et découvrable
J’utilise des outils simples pour accompagner des équipes dans leurs démarches d’amélioration de sites web et de description de contenus avec des données structurées. Cependant, les projets n’avanceraient pas si ces équipes étaient livrées à elles-même, sans ressources pour répondre aux nombreuses questions que la démarche permet de soulever.
Comment améliorer la découvrabilité de contenus culturels sur un site web? Les principes d’organisation et de rédaction des sujets des pages d’un site contribuent à la visibilité des contenus dans les résultats des moteurs recherche. Voici trois étapes essentielles d’une méthode conception web pour une information plus repérable et découvrable:
Vous pouvez évaluer en quelques points si la structure et le contenu des pages de votre site fournissent aux éléments d’information (entités nommées, métadonnées, mots clés) les meilleures conditions d’exploitation, pour des visiteurs et pour des moteurs de recherche.
Arborescence (accès aux offres et contenus).
Nomenclature (alignement de la taxonomie sur les publics cibles).
URL unique et lisible pour chaque offre et contenu.
Images (nomenclature de fichier, texte alternatif, résolutions).
Information à valeur ajoutée (liens vers d’autres sources d’information complémentaire).
2. Faire « du lien »
Comment évaluer le potentiel de rayonnement de vos contenus dans le numérique?
En cartographiant l’écosystème composé de points et de liens qui jouent un rôle central dans leur visibilité et découverte.
En identifiant les points (site web, réseaux sociaux, sites de partenaires) permettant d’établir des connexions pertinentes vers vos offres.
Vous reporterez ensuite, dans une grille, les points ainsi identifiés, puis dresser l’inventaire détaillé de l’information diffusée, de la fréquence des publications, des rôles et responsabilités de chacun. Vous serez alors en mesure de:
Déterminer les points permettant de rejoindre différents publics (en d’autres termes, associer les bons canaux et contenus aux bons publics).
Identifier les liens à créer ou à solidifier ainsi que les partenariats à développer.
3. Décrire les entités
Cette grille permettra d’identifier les métadonnées qui rendent vos offres et contenus uniques et plus faciles à trouver. Vous pouvez à la fois:
Trouver les mots pour différencier votre offre auprès de vos publics cibles.
Fournir des métadonnées permettant aux moteurs de recherche de fournir des réponses personnalisées.
Ces activités devraient être réalisées en groupe, au sein d’une organisation ou, lorsqu’il s’agit d’une initiative collective, avec les représentants de différentes organisations.
Notre focalisation sur le marketing et les solutions technologiques est-elle un risque pour la diversité culturelle ? L’absence de vision partagée et la course aux résultats peuvent-elles faire perdre aux acteurs de la culture la maîtrise stratégique des choix en matière de diffusion et d’accès ?
Nous espérons des solutions mécanistes qui accroîtront la consommation en imposant des offres culturelles à la façon des vieux modèles publicitaires. La mise en données de contenus culturels ne doit pas nous faire oublier qu’il appartient à chacun de réaliser la partie la plus stratégique d’un projet numérique : décider de la façon dont une chose (une œuvre, par exemple) doit être documentée et déterminer ce qui la relie à d’autres informations dans le web des données.
L’emploi du mot « initiative », de préférence à « projet », souligne l’importance de la démarche et des apprentissages, par rapport à la livraison d’un outil ou la modernisation d’un système. Voici comment nos initiatives pourraient être plus marquantes.
Miser sur l’éducation et l’accès à la culture
Le marketing peut entraîner la consommation de produits et services culturels, mais ce sont l’éducation et l’accès à la culture qui peuvent faire découvrir et apprécier la culture. Or, il faudrait une plus grande porosité entre les politiques et projets éducatifs et culturels pour miser sur l’environnement familial et social pour faire connaître la culture.
Il faudrait également donner un rôle plus actif, dans nos plans et initiatives numériques, aux médiateurs de proximité que sont les professionnels des bibliothèques publiques et scolaires.
Privilégier les initiatives qui favorisent la diversité
Nous cherchons, par tous les moyens, à ce que la culture locale soit vue et consommée, de préférence à d’autres offres. Nos propositions techniques partagent cependant les défauts des plateformes dominantes. Qu’il s’agisse de baliser des contenus pour les moteurs de recherche ou de créer de nouvelles bases de données interrogeables, la façon dont sont conçues ces « solutions » technologiques nuit à la diversité des offres culturelles.
La centralisation des décisions et du traitement de l’information renforce l’uniformisation.
La popularité comme principal critère de sélection défavorise les contenus de niche, les cultures et langues en situation minoritaire dans un répertoire, sur un territoire ou par rapport au reste du monde.
L’uniformisation du traitement documentaire, par l’imposition d’une méthode de classification, de vocabulaires et de référentiels spécifiques, appauvrit la qualité de l’information. Par conséquent, elle en diminue l’intérêt et la valeur pour différents publics. Les initiatives de décolonisation des modèles descriptifs tentent de réparer les ravages du rouleau compresseur de l’uniformisation sur la citoyenneté culturelle des peuples autochtones.
Les systèmes de recommandations et de personnalisation des offres culturelles reposent sur la similarité des produits et services ou sur la similarité des profils des utilisateurs.
Ne pas céder des choix stratégiques
À l’arrivée de l’informatique, nous avons confié l’organisation de l’information à des systèmes de bases de données, selon les termes d’entreprises. Il est temps de remettre, selon nos propres termes, cette intelligence dans nos sites web et, plus spécifiquement, dans nos catalogues, collections, répertoires, fonds et archives. Nous ne devrions pas abandonner la création de sens et de liens à des opérateurs de plateformes et à des fournisseurs de services.
Être trouvé ou découvert et laisser des traces numériques sont les fruits d’un travail de documentation. Celui-ci est trop souvent escamoté par la recherche d’une solution technologique. De plus, les façons de décrire des productions ou des offres culturelles offrent peu de possibilité de mettre celles-ci en relation avec des intérêts et des passions.
Par exemple, les catalogues et répertoires en ligne pourraient grandement améliorer l’expérience des utilisateurs en devenant des bases de connaissances interactives et interconnectées. Il serait ainsi possible d’intégrer de nouvelles informations et des liens vers d’autres ressources grâce aux contributions de chercheurs et d’amateurs.
Documenter: laisser des traces, créer du lien et faire sa marque
Documenter la culture et rendre cette information pertinente, attrayante et utile pour divers publics et usages sont la responsabilité de tous les acteurs du milieu culturel. Il manque une méthode de travail et des outils faciles à utiliser pour réaliser, en équipe ou avec des partenaires, l’évaluation de l’information publiée sur le web et le choix des métadonnées qui feront des liens entre les offres culturelles et les publics cibles.
C’est dans cette perspective qu’a été conçu un guide destiné aux artistes et aux organisations du milieu de la danse. Cette approche, en trois étapes (stratégie, information, technologie) repousse les choix technologiques à la toute dernière étape afin de remettre la documentation de la danse à ceux et celles qui la font.
Mise à jour 2019-10-02: ajout d’un exemple récent d’initiative à fort potentiel transformateur.
La tendance zéro clic se confirme. Les moteurs de recherche fournissent dans leurs propres interfaces, des réponses, à partir de données collectées sur des sites web. Ils sont ainsi les principaux bénéficiaires de l’information que nous structurons afin de rendre nos offres plus visibles.
Partenariat inéquitable
De plus, en développant des interfaces d’information spécialisées (voyage, musique, musées, entre autres), ils se substituent aux agrégateurs et portails traditionnels. Cette désintermédiation est particulièrement dommageable pour les structures locales qui produisent de l’information. Celles-ci sont privées de données d’usage qui leur permettraient de mieux connaître leur marché et de s’ajuster à leurs publics.
Effacement de la diversité culturelle
Donc, lorsque nous décrivons nos offres à l’aide de données structurées, sur le modèle Schema.org, et de services comme Google Mon entreprise, nous travaillons pour des moteurs de recherche. De plus, nous nous conformons à un vocabulaire de description, une classification et une vision du monde uniques. Ce constat est un problème pour la diversité culturelle, surtout pour les groupes ethniques et linguistiques en situation minoritaire.
Que faire ? Fournir un service minimum
Cependant, ne pas décrire nos offres avec des balises sémantiques équivaut à refuser de faire indexer nos pages web par les robots des moteurs et, par conséquent, à rendre nos offres et nos contenus invisibles et incompréhensibles pour Google, Bing, Yahoo! et Yandex (moteur de recherche russe).
Tout d’abord, il faudrait donner un « service minimum » aux moteurs de recherche en fournissant uniquement l’information qui est exigée pour certaines offres. Google publie des instructions concernant les balises à renseigner, ainsi que les éléments de contenu à publier pour divers types d’offres.
Attention, Schema.org n’est qu’un vocabulaire. Ce n’est pas Google. Les moteurs de recherche exploitent les balises selon leurs propres règles. Celles-ci évoluent fréquemment, notamment, pour certains types de contenus. Par exemple, Google annonce clairement ses préférences, dans le domaine du livre, en réservant son attention aux distributeurs qui utilisent les balises selon ses instructions.
Que faire d’autre ? Aller vers le web des données
Nous mettons les moteurs de recherche et plateformes commerciales au centre de nos projets. Cependant, nous n’en maîtrisons pas le fonctionnement et nous n’avons aucun moyen de contrôle sur leur développement. Nous y investissons beaucoup d’efforts afin de positionner nos offres dans l’espoir d’accroître la consommation.
Et si nous élargissions notre définition de la découverte plutôt que de la centrer sur des activités de promotion? Ne pas nous limiter à la finalité économique de l’utilisation des données nous permettrait d’en embrasser le plein potentiel pour le développement de la culture et de l’éducation. Si nous choisissions de développer des initiatives en dehors des systèmes contrôlés par les acteurs dominants de l’économie numérique, nous pourrions être plus ingénieux et, finalement, créer plus de valeur pour nos propres écosystèmes.
Accroître le potentiel de la découverte passe par la décentralisation de la gestion de l’information, le partage de connaissance sous forme de données ouvertes et liées, selon les standards du web et par une redistribution plus équitable du pouvoir décisionnel. Wikipédia, Wikicommons et Wikidata, qui sont des projets de la Wikimedia Foundation, exemplifient ce modèle contributif qui donne à chacun la possibilité de participer au contenu et à la gouvernance.
Inventer d’autres formes de découverte
Tous les acteurs du domaine culturel n’ont pas les compétences et les ressources requises pour évaluer, modéliser et connecter des données avec les technologies du web sémantique. Wikidata constitue une option plus accessible: le référentiel, le mode de gouvernance et l’infrastructure n’ont pas à être développés. Ceci a pour principal avantage d’expérimenter rapidement la production et l’utilisation de données liées.
Les requêtes préconstruites qui permettent d’interroger les données de Wikidata offrent un aperçu du potentiel d’un projet contributif pour la valorisation de l’information. Par exemple, la requête 6.16 qui permet de cartographier tous les films en fonction du lieu où se déroule l’action. Lancez la requête en cliquant sur le pictogramme (flèche blanche sur fond bleu) à la gauche de l’écran. Les données des films localisés au Québec ne sont pas exhaustives et sont souvent imprécises (information incomplète, lieu fictif).
Si d’autres sources d’information étaient disponibles sous forme de données liées, on pourrait imaginer une interface où se croiseraient des images des lieux, des biographies d’acteurs et actrices ou des titres de chansons.
*** Mise à jour 2019-10-02
Voici un autre exemple d’initiative qui prend sa source hors des règles imposées par les moteurs de recherche et plateformes. Il s’agit de projets réalisés avec Wikipédia par le Musée national des beaux-arts du Québec. Cette initiative est à la fois, une contribution du musée à la connaissance mondiale, tout en permettant à l’institution d’explorer le potentiel du liage de données, de rejoindre des publics qui ne fréquentent pas de musées et de donner prise à une culture du réseau dans l’organisation. Nathalie Thibault, archiviste au MNBAQ, en mentionne les effets marquants:
Un des impacts positifs de ce chantier a été de bonifier la présence d’œuvres dans des collections d’autres musées au Québec et au Canada dans les articles bonifiés et non pas juste le MNBAQ. Nous souhaitons collaborer avec les autres musées du Québec, car les articles améliorés sur les artistes du Québec serviront certainement à d’autres institutions muséales.
***
En conclusion, il est souhaitable que nous ayons une alternative aux grandes plateformes pour développer nos compétences et mettre en valeur nos collections, catalogues, fonds et portfolios. Il faut cependant favoriser les initiatives qui ciblent des résultats marquants et transmissibles tels que la décentralisation des prises de décision, l’abolition des silos organisationnels et la mise en commun de données.