Archives pour l'étiquette métadonnées

Vers un service public de la donnée culturelle ?

Google Pipes Datacenter, par Jorge Jorquera
Google Pipes Datacenter, Jorge Jorquera via Flickr (CC BY-NC-ND 2.0)

Si la question de l’ouverture des données culturelles ne semble plus faire l’objet de débats intenses,  celle de l’accès aux données d’usage, (données relatives aux interactions des utilisateurs avec les contenus) est le nouvel enjeu essentiel du développement culturel et économique dans un contexte numérique. Un enjeu central de l’économie de la donnée qui intéresse les entreprises (par exemple, IBM), comme les états (ici, la Commission européenne).  Plus près de nous, un rapport de l’Observatoire de la culture et des communications fait état de la difficulté d’accéder à des données permettant de comprendre le comportement culturel des Québécois.

Économie de la donnée: nouveaux oligopoles

Un article publié tout récemment dans The Economist soulève de nombreuses questions concernant l’accaparement des données d’usage par les géants du numérique. Il y est fait allusion aux lois antimonopoles qui visent à empêcher la domination du marché des produits pétroliers par un groupe industriel. Si la donnée est, à présent, devenue le pétrole des modèles d’affaires numériques, faudrait-il repenser les mesures antimonopoles afin d’assurer une dynamique de marché saine et une meilleure protection des données personnelles ? Serait-il même souhaitable que l’État s’en mêle ?

Governments could encourage the emergence of new services by opening up more of their own data vaults or managing crucial parts of the data economy as public infrastructure, as India does with its digital-identity system, Aadhaar. They could also mandate the sharing of certain kinds of data, with users’ consent—an approach Europe is taking in financial services by requiring banks to make customers’ data accessible to third parties.

Ce questionnement devrait également s’appliquer aux pratiques de nos institutions et entreprises culturelles, alors qu’elles doivent entreprendre les transformations nécessaires pour demeurer pertinentes dans un contexte numérique. On ne peut pas, d’un côté, s’élever contre le contrôle des données par les GAFA  (Google, Apple, Facebook, Amazon) et autres plateformes supranationales, et de l’autre, favoriser l’émergence d’acteurs dominants locaux qui opéreront le même contrôle.

À qui appartiennent les données d’usage ?

À ce titre, le Conseil national du numérique (ou CNNum), un groupe consultatif indépendant, en France, vient de publier un avis sur la libre circulation des données à l’intention de la Commission européenne afin de faire opposition aux lobbys qui souhaiteraient l’édiction d’un droit de propriété sur les données. Ce qui pose la question de la propriété de ces données: appartiennent-elles à ceux qui les produisent (les utilisateurs), ceux qui fournissent les senseurs, ceux qui constituent les bases de données ou ceux qui sont les propriétaires de la plateforme ?

Le CNNum n’est qu’un des nombreux collectifs et organisations à exiger des états qu’ils prennent des mesures afin que les données d’usages ne soient pas accaparées par les acteurs dominants de secteurs industriels au détriment des petites et moyennes entreprises, ainsi que des intérêts des citoyens :

Si le Conseil souscrit au lancement d’une initiative européenne pour favoriser la circulation des données en Europe, il considère que les barrières à cette circulation se situent moins au niveau des frontières nationales qu’au niveau des stratégies de lock-in et de rétention de données entre acteurs économiques et que l’action de la Commission européenne devra poursuivre en priorité l’objectif de faire émerger un environnement de la donnée ouvert, favorable à la concurrence et à la diffusion des capacités d’innovation.

Données culturelles: une ressource collective

Le financement public de la culture devrait tenir compte des enjeux clés que sont le contrôle et l’accès aux données dans une économie numérique. Nous aurions intérêt à encourager la mise en commun des données culturelles plutôt que leur cloisonnement. Voici pourquoi:

  • La donnée est un bien non-rival
    Plusieurs utilisateurs peuvent en bénéficier simultanément; leur usage, duplication ou consommation n’entraîne pas de perte directe.

Mise à jour (2017-05-06) Suite à un commentaire très pertinent de Martin Ouellette, fondateur de l’ex-agence Commun (et un des rares publicitaires que j’admire), sur Facebook:
« Je considère que la donnée est un bien rival. Elle peut permettre des prédictions qui donneront un avantage concurrentiel. »
C’est probablement vrai quand on traite un jeu de données structurées et homogènes, provenant d’une source unique. M ais à présent, quand on constate la complexité du traitement nécessaire pour faire parler des données hétérogènes, non structurées et non alignées, l’avantage concurrentiel tient moins à l’accès aux données et beaucoup plus à l’accès aux ressources et expertises pour les nettoyer, les aligner et écrire les algorithmes qui permettent d’en tirer de l’information utile.

  • La valeur de la donnée réside dans ce qu’on en fait
    Comme l’affirme, Hal Varian, économiste en chef chez Google: ce sont les algorithmes, et non la quantité et la qualité des données, qui font une différence.
  • Les données dans des silos produisent moins de valeur
    On obtient une information plus riche par le croisement de données de sources diverses.
  • Produire et réutiliser des données requiert des investissements 
    La mutualisation des expertises et des ressources permettrait à tous les acteurs économiques participants d’acquérir des compétences sur la donnée et de développer une intelligence de marché qui sont essentielles pour la résilience de tout l’écosystème culturel.

L’exploitation collective de données culturelles serait plus favorable à l’émergence de nouveaux modèles d’affaires et la création de services, chez les petites et grandes entreprises. Elle permettrait de produire l’information qui fait actuellement défaut pour comprendre le comportement des consommateurs et repérer les opportunités de marché, et ce , où que ce soit dans le monde.

La culture à l’ère numérique: dans le web des données plutôt que sur une plateforme

Tenter de concurrencer les géants des contenus numériques en proposant nos propres plateformes, comme le proposait Alexandre Taillefer, est une mauvaise bonne idée; surtout dans le domaine culturel. Voici pourquoi:

NON: centraliser l’information dans une base de données

C’est une mauvaise idée, parce qu’il s’agit d’un concept qui va à contre-courant de l’Internet de Tim Berners-Lee: connaissances partagées, production de contenus décentralisée, modèles distributif et collaboratif, données ouvertes et liées, perspectives à la fois locale et globale. Développer une plateforme afin de centraliser dans une base de données l’information concernant des contenus culturels c’est soustraire ces derniers aux connexions potentielles avec d’autres données à travers le monde.

Louis-Jean Cormier dans DBpedia, version sémantique de Wikipédia
Louis-Jean Cormier dans DBpedia, la facette web sémantique de Wikipédia.

Le contenu des bases de données est « sous le web« ,  c’est à dire inaccessible et incompréhensible pour les moteurs de recherche et applications qui ratissent le web en quête de données qui font du sens. La transition d’un web des documents vers le web des données, et, par conséquent, de la préférence visible des moteurs de recherche pour le sémantique (Google et les données structurées), ne font plus de doute. S’exposer dans le web des données ouvertes et liées constitue une bien meilleure stratégie, pour la valorisation des contenus,  le développement de modèles économiques et l’acquisition d’une culture de la donnée, que la reprise d’un concept datant du premier âge du web.

Alors, pourquoi continuer à financer des silos d’information qui interdisent toute possibilité de liens entre nos contenus et l’intention ou le parcours de consommateurs , où qu’ils se trouvent ?

OUI:  mutualiser les ressources pour publier et agréger des données 

La bonne idée est celle de la mutualisation d’équipement et de ressources pour réaliser un projet collectif. Là se trouve le véritable défi de la « révolution numérique »: apprendre à se faire confiance et à collaborer pour développer une valeur collective. Apprentissage d’autant plus difficile que l’offre culturelle est abondante et que notre attention, elle, est limitée.

Publier des données dans le web, comme on le fait pour des pages de sites internet, permet d’éviter les problèmes d’interopérabilité des bases de données tout en préservant l’autonomie des producteurs de données. Il devient, par la suite, possible de collecter et d’agréger ces données afin de les exploiter pour les rendre réutilisables pour des organismes touristiques, pour créer des interfaces d’exploration et, même, pour concevoir des agents intelligents qui feront des suggestions de contenus personnalisées. Mieux que tout autre documentation, cette vidéo produite par la Fondation europeana, explique en 3 minutes ce qu’est le web des données ouvertes et liées et pourquoi il est devenu si important pour la diffusion de la culture.

Le développement de cette infrastructure commune peut être pris en charge par l’État, comme c’est le cas pour Europeana, où l’Union européenne et chacun des états contributeurs, soutiennent les infrastructures et ressources qui permettent aux institutions culturelles de publier leurs données collectivement.  L’État peut également faire appel au milieu académique et au secteur de la recherche, à l’image de l’entente récemment conclue, en France, entre le Ministère de la Culture et de la Communication et l’Inria, afin de soutenir le projet SemanticPedia.

Bien que le web sémantique soit utilisé dans des domaines aussi divers que les services hydroélectriques (Hydro-Québec) et la radiodiffusion (BBCMusic), nous persistons à nous tourner vers des technologies conventionnelles pour diffuser nos contenus culturels. Passer de l’informatique au numérique est clairement un changement difficile à opérer, même dans  une industrie de pointe.

Pour aller plus loin

Pour les technophiles: Le web sémantique en 10 minutes, vidéo produite lors de l’édition 2016 du colloque sur le web sémantique au Québec, dans le cadre du 84e congrès de l’ACFAS.

Libérer le potentiel de nos données culturelles ou laisser d’autres en tirer profit

Silos riachuelo

Tu peux produire de l’excellent contenu, mais s’il ne fait pas partie du web, il ne fait pas partie du discours universel.

Tim Berners-Lee, en entrevue avec Jean-François Coderre pour La Presse.

C’est une affirmation que de nombreux états, institutions et entreprises tiennent désormais pour une réalité. Une réalité que plusieurs expérimentent depuis quelques années déjà et qui s’impose encore davantage à ceux qui observent les transformations qui sont à l’œuvre  dans le web , notamment du côté des moteurs de recherche.

Alors, ne devrions-nous pas élaborer une approche stratégique afin de regrouper et de structurer notre offre culturelle plutôt que d’encourager la production de silos d’informations qui sont difficilement exploitables ?

Comment tirer notre épingle du jeu numérique ?

Il faut nous attaquer à la dispersion de l’offre culturelle, d’une part, et d’autre part, à l’absence de vision transverse sur les données. Autrement, incapables de développer nos propres modèles d’exploitation numériques, nous risquons d’être confinés aux rôles de fournisseurs et de clients de plateformes beaucoup plus attractives et efficaces que nos sites web.

Principal défi: sauf dans des domaines, comme les bibliothèques et  les archives, les organisations ont, en général, peu d’intérêt ou de ressources à investir pour la production de métadonnées standards. Cela pourrait cependant changer.

Données structurées pour moteurs de recherche en quête de sens

Les moteurs de recherche privilégient de façon croissante les contenus web dont la description leur est fournie par des données structurées (appelées quelquefois,métadonnées embarquées). Schema est le modèle de métadonnées soutenu par les grands acteurs du numérique, tels que Google, Microsoft et Apple afin d’alimenter les algorithmes qui fournissent de l’information plutôt que des listes de résultats. Google offre même aux développeurs des modèles descriptifs pour des types de contenus dont la liste s’allonge progressivement.

L’utilisation de la base de connaissance Knowledge Graph, d’un modèle de métadonnées qui est dérivé de la syntaxe du web sémantique (RDF ou Resource Description Framework) et d’un  format d’encodage de données liées (JSON-LD ou Java Script Object Notation for Linked Data) témoigne de la préférence de Google pour le web des données et les liens permettant de générer du sens.

Avec Schema, qui facilite l’intégration des données dans des pages HTML (il existe également des extensions spécialisées pour WordPress), les robot indexeurs et les algorithmes des moteurs de recherche deviennent donc beaucoup plus performants. Il n’est déjà plus nécessaire de quitter leur interface pour trouver une information ou découvrir, par exemple, de nouveaux groupes musicaux.

La production de données structurées est une technique qui deviendra rapidement aussi essentielle que l’optimisation de pages web. Mais une technique, aussi efficace soit-elle, n’est qu’un moyen et ne peut remplacer une stratégie.

Regrouper et structurer notre offre culturelle

Les données doivent pouvoir être extraites des silos existants et reliées entre elles grâce à des métadonnées communes. Les éléments d’information produits par chacun des acteurs du milieu des arts et de la culture peuvent ainsi être reliés de façon cohérente afin de constituer une offre d’information globale et riche et de nous fournir une meilleure visibilité sur les données relatives à l’accès et à l’utilisation de contenus.

Comment accompagner la transition ?

Comment extraire les données descriptives des bases de données et les normaliser ? Comment définir les métadonnées qui formeraient les éléments descriptifs essentiels pour permettre de relier entre eux des ensembles de données qui  utilisent des référentiels standards mais différents ? Et, surtout, comment convaincre les producteurs de données de l’importance de l’interopérabilité et de la structuration intelligente des données ?

Dans cette perspective et afin de travailler collectivement à définir des pistes d’action, nos politiques et programmes devraient jeter les bases d’un projet de mise en commun des données culturelles en soutenant:

  • L’adoption des meilleures pratiques en matière d’indexation de contenu avec des métadonnées et une syntaxe de description qui s’adressent aux machines;
  • L’élaboration d’un un ensemble de métadonnées de base (modèle de médiation) qui permette de « faire la traduction » entre les différents standards et vocabulaires employés selon les domaines (musique, cinéma, arts visuels) et les missions (bibliothèque, archives, commerce, gestion de droits);
  • La libération des données qui décrivent nos créations artistiques, nos produits culturels, nos talents et notre patrimoine. Les données ouvertes constituent une première étape vers la diffusion de données ouvertes et liées.
  • L’acquisition des compétences techniques et technologiques qui sont requises afin de concevoir et de maintenir des outils pour faciliter la saisie et la réutilisation des données par les acteurs concernés.
  • L’harmonisation des différents modèles d’indexation documentaire (référentiels transversaux pour la production des données culturelles, cartes d’identité des biens culturels) au sein du Ministère de la Culture et des Communications.
  • Une étroite collaboration entre les institutions et les organismes producteurs de données autour de la rédaction d’une politique des métadonnées culturelles.

On ne devient numérique qu’en le faisant. Mais c’est un chantier qui repose davantage sur la collaboration et la mise en commun de l’information que sur la technologie.

Musées: des données ouvertes aux données ouvertes et liées

Données ouvertes et liées: connexions possibles entre les données de différentes institutions.
Si nos collections étaient dans le web des données, elles pourraient se lier aux données mondiales de la culture grâce aux métadonnées descriptives.

Comment les musées peuvent-ils rester pertinents dans l’espace numérique ? Alors que la recherche et la découverte de nouvelles connaissances passent par l’intermédiation des moissonneurs de données, robots indexeurs et algorithmes de filtrage, la richesse des institutions de mémoire collective n’est ni accessible, ni compréhensible à ceux-ci.

En sortant de leurs voûtes technologiques les données qui décrivent les objets composant leurs collection, les musées peuvent multiplier les opportunités afin qu’elles se trouvent sur le parcours des machines et des internautes.

Libérer des données pour développer de nouvelles compétences numériques

Cependant, pour publier des données dans le web, il faut convertir celles-ci afin de leur donner des métadonnées et une syntaxe qui soient compréhensibles pour des machines. Même limité à une petite collection d’objets, ce chantier s’avère exigeant pour une équipe ne disposant pas des connaissances des modèles et standards de métadonnées, ainsi que des technologies du web sémantique. C’est pourquoi libérer un ensemble de données constitue un projet idéal pour se familiariser avec les concepts et les enjeux spécifiques à l’exploitation de données dans le web.

Un exemple ? Nathalie Thibault (Musée national des beaux-arts du Québec) et Isa Mailloux (Musées de la civilisation) partagent leurs expériences acquises avec des projets de données ouvertes.

De données ouvertes à données ouvertes et liées: quoi, pourquoi, comment

La vidéo précédente est tirée du dossier Données ouvertes au musée préparé par la Société des musées du Québec (SMQ).  C’est sur le thème des données ouvertes que cette dernière avait organisé les conférences et discussions de la journée professionnelle du 22 juin dernier. Dans la perspective du web des données, de l’apprentissage machine et du traitement algorithmique de l’information, les données ouvertes et liées apparaissent comme la suite logique des données ouvertes. Conçu en collaboration avec l’équipe de la SMQ, le document (PDF 11,2 Mo) qui accompagne les vidéos des présentations a pour objectif de présenter de façon accessible le quoi, le pourquoi et le comment des données ouvertes et des données ouvertes et liées dans le contexte spécifique aux collections muséales.

De la découvrabilité à l’intelligence artificielle

Publier des données dans le web permet d’opérer des changements radicaux, mais nécessaires dans un contexte de transformation numérique:

Exposer l’information et aller à la rencontre des publics

Il faut sortir l’information des voûtes technologiques, car celle-ci a plus de valeur pour l’utilisateur, lorsqu’elle peut être mise en relation, enrichie et contextualisée, que lorsqu’elle est isolée. Dans une économie de l’attention mondialisée, offrir une information tissée en réseau, navigable et exploitable dans le web est plus stratégique qu’attendre la visite d’internautes, chacun sur son site web.

Collaborer et mutualiser les ressources et compétences

Puisque les réseaux se construisent sur la confiance, il faut considérer les autres institutions et acteurs du domaine culturel comme des alliés et, possiblement, des partenaires potentiels afin de travailler collectivement à rendre nos sources d’information interopérables. Ensemble, nous pouvons réaliser beaucoup plus et beaucoup mieux.

Faire des liens et générer plus d’information

Grâce aux métadonnées qui en précisent le sens (par exemple, les métadonnées creator ou subject permettent de distinguer une personne dans son rôle de créateur d’une œuvre ou de sujet d’une œuvre), il est possible de relier entre elles des données provenant de sources différentes. Et ceci, même si les modèles de métadonnées employés ne sont pas les mêmes, pour autant que ces derniers soient issus de référentiels standards et ouverts. La recherche d’information n’est donc plus limitée à un ensemble d’éléments fini et prévisible tel que le contenu d’une base de données. Par le jeu des relations ou par inférences, elle peut déboucher sur une nouvelle information qui n’était pas présente dans l’ensemble initial.

Penser agrégation de données plutôt que sites web

Parce que les données constituent le capital de l’économie numérique, libérer des données permet d’acquérir des connaissances et pratiques essentielles pour le développement de produits et services innovants. Il ne faudrait cependant pas se satisfaire de la production d’ensembles de données constituant, même au sein du domaine muséal, des silos d’information non exploitables dans le web et non-interopérables. Les données ouvertes sont donc une étape vers les données ouvertes et liées et la possibilité de réaliser l’agrégation des données culturelles québécoises.

Le web sémantique permet d’élaborer des requêtes et de programmer des algorithmes qui réalisent des opérations de raisonnement en mettant en relation des informations faisant du sens. Les données ouvertes et liées nous amènent à l’intelligence artificielle grâce à laquelle nous pouvons étendre le champ de nos connaissances et avoir, sur nos collections, une perspective intégrée que ne peuvent nous donner des bases de données isolées les unes des autres.

Contenus culturels: sous, sur ou dans le web ?

Mise à jour 2016-12-10: Clarifications suggérées par Christian Aubry. Illustration: substitution du terme « lisibles » par « compréhensibles ». Conclusion: clarification du sens du paragraphe.

Sous, sur ou dans le web ? Nos contenus culturels sont-ils dans le web des données ?
Nos contenus culturels sont-ils dans le web des données ? Rapport-synthèse produit pour la SODEC, avril 2016

Où en est le web ? Les signes d’une transformation importante sont bien présents, mais diffus et disséminés parmi les différentes facettes d’un amalgame de technologies, connaissances, modèles de pensée, industries, usages et comportements. L’annonce d’une initiative européenne de valorisation de la connaissance dans un web spatiotemporel, Time Machine, évoque une très proche discontinuité :

La seconde révolution de l’Internet commence maintenant, avec la mort annoncée des moteurs de recherche du présent et l’entrée en scène d’une manière d’indexer l’information.

Nous sommes entrés  dans une ère où il ne sera plus nécessaire de quitter l’interface d’un moteur de recherche pour accéder à la connaissance et où les applications de recommandations s’alimentent à de larges ensembles de données structurées et signifiantes.

De moteurs de recherche à moteurs de réponses et de connaissances

La liste de résultats des moteurs de recherche fait graduellement une place de choix à une réponse ou une proposition. Bien que les machines ne parlent pas le langage des humains, elles peuvent interpréter la syntaxe et les marqueurs qui sont utilisés spécifiquement pour décrire  une chose, une personne ou un concept abstrait.

La fiche qui apparaît dans le coin supérieur droit de l’écran du moteur de recherche Google tend à prendre plus d’espace alors que nous apprenons à publier l’information que nous souhaitons visible, persistante et connectée. Pour cela, il faut aller bien au-delà des techniques d’optimisation de pages web et apprendre à publier les données qui décrivent nos contenus selon des modèles normés. L’information représentée selon un modèle et des métadonnées standards devient alors  compréhensible et exploitable pour les applications qui ratissent le web.

Du web des documents au web des données (et du sens)

Mais où sont les données qui décrivent nos contenus culturels ?Elles sont sous le web, malheureusement Les répertoires, collections, fonds et même, les calendriers de représentations et de tournées sont stockés sous forme de bases données. Celles-ci ne sont pas accessibles aux machines qui repèrent et collectent des données pour les moteurs de recherche, agrégateurs, systèmes automatiques d’archivage et autres moissonneurs de données qui s’activent dans le web. Même si ces machines avaient accès aux bases de données, elles ne disposeraient pas des clés nécessaires pour reconstituer et interpréter l’information.

Les modèles numériques carburent à la donnée

Au constat de l’absence de notre patrimoine et de nos productions artistiques et culturelles du web s’ajoute celui de l’absence d’une culture de la donnée.  Comme je le partageais dans un mémoire sur le renouvellement de la politique culturelle, sans maîtrise de la donnée:

  • Les tenants et aboutissants de la transition numérique accomplie par les précurseurs nous échappent et nous n’en retenons que les manifestations externes.
  • Nous demeurons uniquement les fournisseurs de contenu des plateformes qui tirent dorénavant plus de valeur des données décrivant ces contenus et celles qui sont générées par leur utilisation que des contenus eux-mêmes.
  • Nous ne pouvons pas repérer et interpréter les signaux faibles du changement et nos indicateurs de mesure ne permettent pas une lecture adéquate des multiples facettes de la vie culturelle dans nos univers physiques et numériques.
  • Nous nous limitons à la promotion des nouveautés pendant que nos catalogues, répertoires et collections, échappent à la découverte et à la possible réutilisation qui leur donnera une seconde vie.

Afin d’illustrer mon propos, voici une anecdote: j’ai passé près de deux heures à explorer de nombreuses œuvres musicales en me renseignant sur la musique western. J’ai exploré les chansons des sœurs Boulay et je me suis éparpillée entre des productions commerciales et artisanales. Je n’ai pas quitté Google, en passant de vidéos à des listes de titres populaires.

C’est bien pour la découverte de la musique d’ici, mais:

  • Qui a collecté mes données personnelles et d’usage ?
  • Qui a accru sa connaissance d’un marché en analysant mon comportement et mes préférences ?
  • Qui a engrangé la matière première qui fait de ses services, aussi efficaces qu’attractifs, un modèle d’affaires extrêmement profitable ?

Découvrabilité: pour développer une culture de la donnée

Ce n’est pas la découvrabilité numérique qui fait la réussite des modèles d’affaires des plateformes numériques, c’est ce qui lui permet de réaliser son potentiel: l’exploitation et la valorisation de l’information. Or, dans nos universités, nos programmes de sciences de l’information sont presqu’exclusivment orientés vers la gestion de collections de documents et, du côté des technologies de l’information, le web des données n’est qu’un sujet optionnel du programme de maîtrise. Il serait temps d’élaborer un programme universitaire de deuxième cycle pour allier les perspectives et connaissances en information (indexation et modélisation) et en informatique (web sémantique).

Si nous ne maîtrisons pas les principes et techniques nécessaires à l’exploitation de nos contenus culturels dans le web, comment pourrons-nous soutenir les nouveaux acteurs d’une économie numérique ? Comment répondrons-nous aux besoins d’expertise dans les créneaux émergents comme l’intelligence artificielle, les crypto monnaies (Bitcoin) ou les registres de transactions distribués (Blockchain) ?

 

Stratégie numérique pour le Québec: sur les modèles d’une nouvelle économie

Site de la consultation sur la stratégie numérique, Ministère de l'Économie, de la Science et de l''Innovation, Québec.

Mes contributions, dans le cadre de la consultation sur la stratégie numérique du Ministère de l’Économie, de la Science et de l’Innovation du Québec. Celles-ci témoignent de ma perspective, qui est essentiellement orientée vers les sciences de l’information. Et c’est d’une pluralité de regards et d’expertises sur les enjeux des transformations en cours dont nos dirigeants ont besoin.

C’est malheureusement, pour ceux et celles qui souhaiteraient offrir autre chose qu’une liste de souhaits, une démarche qui appartient plus à la réalisation d’une étude de marché qu’à un processus structuré d’écoute pour enrichir une réflexion (décision?) gouvernementale. Voici mes contributions fournies en quatre temps, compte tenu de l’espace accordé, mais qui sont ici, allongées de quelques mots afin d’en préciser le sens.

Économie numérique 1/4 – Les modèles
Des modèles d’affaires centrés sur l’exploitation de l’information: la donnée a plus de valeur que le produit qu’elle décrit et l’exploitation de données est plus rentable que la production de ressources. Nous n’avons pas de culture de la donnée (absence de normalisation et d’interopérabilité des bases de données, au sein d’un même système d’information et entre organisations apparentées).

Économie numérique 2/4 – Les données
Les données de nos BD sont inexploitables dans le web (normalisation, interopérabilité, sémantique) parce que nous concevons des systèmes sans penser à générer de l’information pour qu’elle soit largement diffusée. Nous formons des professionnels compétents mais nous les confinons à la gestion de bibliothèques.

Économie numérique 3/4 – Les compétences
Nous sommes mal équipés pour comprendre et réagir rapidement aux changements en cours. Nous passons du web des documents au web des données. Nous risquons d’être mis hors jeu par des joueurs qui participent à l’élaboration des règles que nous ne maîtrisons pas, alors que nous focalisons sur le développement d’outils.

Économie numérique 4/4 – Le web des données
La capacité de découvrabilité de nos produits dépend de plateformes étrangères qui, elles, s’enrichissent avec l’exploitation des données que nous générons. Allons-nous continuer à soutenir le développement de silos de données ou apprendre les changements qui  sont à l’oeuvre dans le web  et à quoi servent des métadonnées?

Nouvelles compétences informationnelles pour modèles numériques

Nous produisons des contenus numériques et nous adoptons de nouveaux outils, mais nos modèles d’affaires et nos stratégies de promotion et diffusion demeurent cependant essentiellement les mêmes. Alors, comment se positionner face aux modèles d’affaires plus rentables et plus attractifs des géants du numérique tels que décrits dans cet article sur une nouvelle classification des entreprises?

/…/ companies that build and manage digital platforms, particularly those that invite a broad network of participants to share in value creation (such as how we all add content to Facebook’s platform or that anyone can sell goods on Amazon’s), achieve faster growth, lower marginal cost, higher profits, and higher market valuations.

Ce qui contribue à leur montée en puissance, c’est la donnée qui leur permet de mettre leurs contenus en avant et de générer de l’information toujours plus précise et pertinente pour la prise de décisions stratégiques.

Exploitation du graphe des connaissances et des données ouvertes et liées par Google
Exploitation du graphe des connaissances et des données ouvertes et liées par Google.

Culture de la donnée? Plutôt, des compétences informationnelles

Malgré les transformations qui accélèrent la mutation des modèles industriels et économiques, les opportunités et enjeux ayant trait à l’exploitation des données sont généralement ignorés dans la plupart des analyses et propositions d’action, qu’il s’agisse de politiques gouvernementales ou d’initiatives entrepreneuriales.

Cette situation s’explique fort probablement par le faible niveau de connaissances en matière d’information; ce qu’on appelle parfois les compétences informationnelles.  En effet, si les technologies de l’information au sein de nos organisations ont un pouvoir, des ressources et des budgets dédiés, la matière première — la donnée, le document, l’information et même la connaissance — ne constitue pas une priorité.

Et pourtant.  Comprendre de quoi sont faites les données (standards et sciences de l’information) et comment évolue leur exploitation (algorithmes, technologies sémantiques, blockchain) permet d’apprécier les modèles numériques d’une toute autre manière qu’en utilisateur de systèmes: en « créateur de valeur ».

Au cours de la préparation d’un atelier pour la SODEC, dans le cadre de la prochaine édition du SODEC_LAB Distribution 360, j’ai répondu à quelques questions concernant le rôle central des données dans la diffusion et la mesure des contenus, et notamment, leur potentiel de découvrabilité.  Deux questions, qui reviennent régulièrement aux cours des présentations, démontrent clairement qu’il est urgent d’élaborer un programme afin de palier le sous développement des compétences informationnelles dans nos organisations, qu’il s’agisse d’une startup ou d’un ministère.

Je partage ici ces questions, ainsi qu’un aperçu des réponses.

Comment peut-on définir simplement ce qu’est une donnée?

Par l’exemple. Voici une donnée:

snow

C’est un « morceau d’information »; la plus petite unité de représentation d’une information. Exploitée individuellement, sans contexte (dont la langue) ou d’autres données, cette donnée peut prendre n’importe quel sens

Nom: Snow
Prénom: Michael
Activité: Artiste
Pays: Canada

Ensemble, des données permettent de produire de l’information, notamment, grâce à la présence de ces données spéciales que sont les métadonnées (meta: auto-référence, en grec).  Nom, Prénom, Activité, Pays permettent de comprendre le sens des données auxquelles elles sont reliées, surtout si elles sont dans des formats difficiles à interpréter comme des numéros d’identification.

Les données peuvent être structurées, comme dans les bases de données ou les feuilles de calcul, ou non structurées, comme des textes sur Twitter et Facebook ou des images-commentaires sur Snapchat.

Les données non structurées sont généralement très riches mais requièrent un traitement manuel ou automatisé.  Mais, en général, l’exploitation des données fait face à un enjeu majeur: leur hétérogénéité. Les technologies, les modèles de représentation et les formats de données sont autant de silos qui empêchent de relier des données de sources diverses entre elles.

À quelles données pouvons-nous avoir accès?

Il y a une abondance de données accessibles à tous les participants d’un écosystème donné. Chaque individu, chaque organisation est une machine à produire des données.

Par exemple, les industries culturelles produisent des données sur les contenus et sur la consommation de contenu.

Les grandes plateformes numériques excellent dans leur domaine en grande partie pour ces raisons:

Exhaustivité. Elles fournissent sous forme de données et métadonnées,  de l’information très détaillée à propos de leurs contenus (description, ambiance, audience, son, couleur, etc.).

Connectivité. Elles savant que les données détaillées qui décrivent leurs contenus génèrent de nouvelles données lorsqu’elles sont liées à des données de consommation ou à d’autres données sur des contenus.

Dévouvrabilité. Elles comprennent le rôle central joué par les données et métadonnées pour la  découvrabilité des contenus. De plus en plus de contenus vont à la rencontre de leurs publics, entre autres, par Google qui donne des réponses plutôt que de fournir des listes de destinations où trouver les réponses. Taper « Best actor oscar 2016 », vous y constaterez que Google exploite de façon croissante le graphe des connaissances (knowledge graph) et des données ouvertes et liées (Linked Open Data).

Pertinence. Elles se servent des données pour cibler des consommateurs, mais, de plus en plus, pour créer des contenus ou permettent à des producteurs de proposer des offres qui trouveront plus facilement leurs publics.

Mesure. Elles utilisent ou expérimentent divers indicateurs de mesure, autres que des transactions ou des faits comme des tendance,  des modèles de comportement ou, encore mieux: la relation au contenu. Elles pratiquent l’écoute sociale en suivant, par exemple, les conversations sur Twitter avant, durant et après le lancement d’un contenu.

La donnée génère l’information qui est au cœur du modèle économique des puissantes plateformes numériques. Celles-ci ont toujours plusieurs trains d’avance sur leurs compétiteurs (et, souvent, également fournisseurs) dont la vision et les modèles relèvent encore des méthodes de l’ère industrielles.  Nos industries culturelles, pour ne citer que cet exemple, disposent d’une masse de données, mais celles-ci sont peu entretenues et exploitées.

Avant de développer un énième silo d’information (plateforme, application), il faudrait peut-être apprendre à connecter nos données et les mettre en réseau pour générer le plus d’effet à long terme pour notre économie et notre culture.

 

 

La donnée est l’élément pivot d’une nouvelle politique culturelle

Nos contenus culturels sont-ils dans le web des données ?

Mémoire déposé dans le cadre de la consultation publique pour le renouvellement de la politique culturelle du Québec, 8 mai 2016.

Représentation du web des données ouvertes liées - 2014

Parmi tous les documents publiés — tant par les gouvernements du Québec et du Canada que par les institutions et organismes préoccupés par le nécessaire renouvellement d’une politique culturelle dans un contexte de transition numérique — il n’est fait aucune mention de la donnée. Celle-ci est pourtant au cœur du « numérique » (peu importe la définition choisie) si bien qu’il est impossible d’élaborer une vision, une politique et des programmes qui soient cohérents et qui aient un impact réel et de longue durée sans une compréhension fine de ce dont il s’agit.

Comprendre la donnée, c’est être en mesure de répondre à la plupart des questions qui se trouvent sous les sept thèmes du document de consultation et, de manière plus générale, à celles-ci :

  • Quels sont les éléments fondamentaux sur lesquels il faut agir pour que la politique culturelle fasse émerger des projets et actions ayant un impact transformateur et durable sur l’économie de la culture?
  • Que devrait-on retenir des orientations qui façonnent les stratégies et les programmes d’états ayant une structure de soutien similaire à celle du Québec?
  • Comment des programmes peuvent-ils avoir une portée transversale sur les trois principaux axes de la politique que sont :
    (1) l’affirmation de l’identité culturelle,
    (2) le soutien aux créateurs et aux arts et
    (3) l’accès et la participation des citoyens à la vie culturelle?

Ces questions ont orienté la rédaction de ce mémoire. Celui-ci a été rédigé à partir d’un rapport-synthèse réalisé à la demande de la SODEC afin de dégager les éléments essentiels à son appréhension du contexte au sein duquel les créateurs et entreprises culturelles vivent désormais.  Lire le mémoire

Pourquoi vos métadonnées musicales sont aussi importantes que votre musique

 

TGiT - Tag ta musique: indexation de contenus musicaux

Pourquoi s’investir autant dans la création et la production d’œuvres musicales et les laisser ensuite devenir graduellement invisibles sur le Web, une fois la campagne de promotion terminée ? Pourquoi laisser aux plateformes technologiques le soin d’identifier et de catégoriser les œuvres ? Pourquoi s’insurger d’une part contre la copie illégale et de l’autre, diffuser des fichiers audio sans données détaillées sur les créateurs et les détenteurs des droits ?

Ces questions surgissent depuis que je contribue à des projets de valorisation de métadonnées dans le domaine de la culture. Ce sont également des enjeux vitaux pour la présence numérique de la musique créée et produite au Québec, Ce sont ces même raisons qui m’amenaient à assister à la présentation de Jean-Robert Bisaillon, lors du MusiQClab du 28 janvier dernier, à Montréal.

Lire la suite sur le blogue de MusiQC numériQC.

Industries culturelles: la vraie nature de la transition numérique

Initialement publié dans le blogue de Direction informatique, le 7 décembre 2015.

Le plus grand défi imposé par la révolution numérique aux industries culturelles et créatives n’est pas de nature technologique mais organisationnelle.  Nous ne voyons encore que trop peu d’expérimentations hors des modèles de création et de distribution traditionnels. Qu’est ce qui retient nos entreprises culturelles?

Lors du Sommet sur la découvrabilité, qui était organisé par le CRTC et l’ONF et qui avait lieu à Montréal la semaine dernière, j’ai eu l’impression qu’il fallait encore convaincre les participants que les changements qui bouleversent leur univers sont, non seulement irrémédiables, mais qu’ils s’accélèrent. Pourtant, nous ne sommes plus uniquement en présence de nouveaux usages numériques, mais d’une nouvelle génération de « consommacteurs » autour desquels s’élaborent des services et des outils. Un public plus difficile à joindre et qui a sa propre grammaire, comme le mentionnait Suzanne Lortie, professeur et directrice du programme en stratégie de production culturelle et médiatique à École des médias de l’UQAM, en parlant des YouTubers, ces jeunes créateurs de contenus qui sortent des codes habituels de l’audiovisuel et ont des succès d’audience.

Il y a pourtant plusieurs années maintenant qu’ont été publiés les rapports du CALQ et de la SODEC sur le nécessaire virage numérique.  Il est donc fort probable que tous étaient déjà bien au fait des transformations qui affectent la création, la distribution et la consommation de contenus culturels.  C’est pourquoi les conférences qui composaient la première partie de l’événement n’ont pas déclenché d’électrochoc mais ont rappelé l’urgence d’agir face à des écosystèmes et des modèles qui se mettent en place en ne nous laissant qu’un rôle de fournisseur de contenus.

La table ronde qui réunissait des experts, praticiens et enseignants a permis d’entrevoir, trop brièvement, ce qu’un réseau de compétences et d’expériences diversifiées pourraient apporter à des projets novateurs.  Ces « partenariats improbables » évoqués par Sylvain Lafrance, professeur à HEC Montréal et ancien vice-président exécutif de Radio-Canada, ne seraient-ils pas plutôt des alliances naturelles dont on a ignoré le potentiel ?

Face au rouleau compresseur culturel des grandes plateformes numériques ne faudrait-il pas développer un réseau de partenaires afin de miser sur la mutualisation de ressources et de compétences? Et, pourquoi, tel que le suggérait le conférencier principal et consultant en nouveaux médias, Pascal Lechevallier, ne pas établir des partenariats à l’échelle de la francophonie ? C’est cette même ouverture sur le monde et les marchés francophones, que réclamait Jean-Daniel Nadeau, journaliste au Devoir, en dénonçant la myopie des médias, à la suite du Congrès de la fédération des journalistes du Québec.

Ces questions avaient pourtant déjà été soulevées en 2012, lors d’un forum France-Canada sur les enjeux des contenus numériques, organisé par le Conseil des technologies de l’information et des communications. Plusieurs des participants au sommet de la semaine dernière y étaient d’ailleurs présents.

Le véritable défi pour les contenus culturels à l’ère numérique est de sortir d’un modèle de création et de production qui n’est plus supporté par l’écosystème. Comme je l’ai démontré dans un billet précédent, la vraie nature du changement est culturelle: il faut abattre les silos disciplinaires et organisationnels pour connecter nos réseaux de compétences et mettre en commun nos savoirs.

Ce sont les réseaux collaboratifs qui permettent de décoder les signaux faibles du changement, de varier les perspectives sur une problématique et d’élaborer un prototype de solution. Pourquoi des organisations qui ont des enjeux communs ne collaboreraient-elles pas ensemble pour expérimenter des solutions? Parmi nos créateurs et nos entreprises culturelles, quels sont ceux et celles qui rechercheront ces « partenariats improbables »?